A067128 Ramanujan's largely composite numbers, defined to be numbers m such that d(m) >= d(k) for k = 1 to m-1.
1, 2, 3, 4, 6, 8, 10, 12, 18, 20, 24, 30, 36, 48, 60, 72, 84, 90, 96, 108, 120, 168, 180, 240, 336, 360, 420, 480, 504, 540, 600, 630, 660, 672, 720, 840, 1080, 1260, 1440, 1680, 2160, 2520, 3360, 3780, 3960, 4200, 4320, 4620, 4680, 5040, 7560, 9240
Offset: 1
Examples
8 is a term as d(8) = 4 and d(k) <= 4 for k = 1,...,7.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- P. Erdős, On Highly composite numbers, J. London Math. Soc. 19 (1944), 130--133 MR7,145d; Zentralblatt 61,79.
- Jean-Louis Nicolas, Répartition des nombres largement composés, Acta Arithmetica 34 (1979), 379-390.
- J.-L. Nicolas and G. Robin, Highly Composite Numbers by Srinivasa Ramanujan, The Ramanujan Journal, Vol. 1(2), pp. 119-153, Kluwer Academics Pub.
- Vladimir Shevelev, On Erdős constant, arXiv:1605.08884 [math.NT], 2016.
Crossrefs
Programs
-
Maple
isA067128 := proc(n) local nd,k ; nd := numtheory[tau](n) ; for k from 1 to n-1 do if numtheory[tau](k) > nd then return false ; end if; end do: true ; end proc: A067128 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do if isA067128(a) then return a; end if; end do: end if; end proc: seq(A067128(n),n=1..60) ; # R. J. Mathar, Apr 15 2024
-
Mathematica
For[n=1; max=0, True, n++, If[(d=DivisorSigma[0, n])>=max, Print[n]; max=d]] NestList[Function[last, NestWhile[# + 1 &, last + 1, DivisorSigma[0, #] < DivisorSigma[0, last] &]], 1, 70] (* Steven Lu, Nov 28 2022 *)
-
PARI
is(n) = my(nd=numdiv(n)); for(k=1, n-1, if(numdiv(k) > nd, return(0))); return(1) \\ Felix Fröhlich, May 22 2016
Extensions
Edited by Dean Hickerson, Jan 15 2002 and by T. D. Noe, Nov 07 2002
Comments