A066663
Numbers n such that phi(n) is a proper substring of n.
Original entry on oeis.org
1320, 1640, 1768, 1996, 2640, 3960, 13200, 16400, 19984, 19996, 26400, 39600, 132000, 164000, 199996, 264000, 396000, 1320000, 1640000, 1999936, 2640000, 3960000, 13200000, 16400000, 16666240, 17999488, 18515584, 19999984, 19999996
Offset: 1
phi(1320)=320, phi(1640)=640, phi(1768)=768, phi(1996)=996, phi(2640)=640,..., phi(199999999984)=99999999984.
-
Select[Range[2, 10^5], StringPosition[ ToString@ #, ToString@ EulerPhi@ #] != {} &] (* Giovanni Resta, Apr 14 2017 *)
A093945
Primes of the form 5*10^n - 1.
Original entry on oeis.org
499, 4999, 49999, 4999999, 499999999999999, 4999999999999999999999999999999999999999999999999999999
Offset: 1
-
Select[Table[FromDigits[PadRight[{4},n,9]],{n,60}],PrimeQ] (* Harvey P. Dale, Feb 20 2016 *)
A248857
Composite numbers n such that n - phi(n) is a power of 10.
Original entry on oeis.org
1320, 1640, 1768, 1996, 13200, 16400, 19984, 19996, 132000, 164000, 199996, 1320000, 1640000, 1999936, 13200000, 16400000, 16666240, 17999488, 18515584, 19999984, 19999996, 132000000, 164000000, 164296960, 166662400, 199999936, 199999984, 1320000000
Offset: 1
1320 is in the sequence because 1320 - phi(1320) = 10^3.
-
a248857[n_] := Select[Select[Range@n, CompositeQ[#] &], IntegerQ[Log10[# - EulerPhi[#]]] &]; a248857[10^7] (* Michael De Vlieger, Jan 07 2015 *)
-
lista(nn) = forcomposite(n=2, nn, if (ispower(n-eulerphi(n),,&d) && (d==10), print1(n, ", "))); \\ Michel Marcus, Jan 06 2015
Showing 1-3 of 3 results.
Comments