cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A107666 Primes having only {4, 6, 9} as digits.

Original entry on oeis.org

449, 499, 4649, 4969, 4999, 6449, 6469, 6949, 9649, 9949, 44449, 44699, 46499, 46649, 49499, 49669, 49999, 64499, 64969, 66449, 66499, 66949, 69499, 94649, 94949, 94999, 96469, 99469, 444449, 444469, 444649, 446969, 449699, 464699, 464999, 466649, 469649, 469969
Offset: 1

Views

Author

Rick L. Shepherd, May 19 2005

Keywords

Comments

Intersection of A000040 and A107665. - K. D. Bajpai, Sep 08 2014

Examples

			From _K. D. Bajpai_, Sep 08 2014: (Start)
4649 is a term because it is a prime having only semiprime digits 4, 6 and 9.
6469 is a term because it is a prime having only semiprime digits 4, 6 and 9.
449 is the smallest prime comprising only semiprime digits 4, 6 or 9.
(End)
		

Crossrefs

Cf. A107665 (numbers with semiprime digits), A001358 (semiprimes), A051416 (primes whose digits are all composite), A020466 (primes with digits 4 and 9 only), A093402 (primes of form 44...9), A093945 (primes of form 499...).

Programs

  • Maple
    N:= 4:  Dgts:= {4, 6, 9}:  A:= NULL:
    for d from 1 to N do
    K:= combinat[cartprod]([Dgts minus {0}, Dgts $(d-1)]);
    while not K[finished] do L:= K[nextvalue]();  x:= add(L[i]*10^(d-i), i=1..d);
    if isprime(x) then A:= A, x fi od od: A;  # K. D. Bajpai, Sep 08 2014
  • Mathematica
    Select[Prime[Range[50000]], Intersection[IntegerDigits[#], {0, 1, 2, 3, 5, 7, 8}] == {} &] (* K. D. Bajpai, Sep 08 2014 *)

Extensions

a(35)-a(38) from K. D. Bajpai, Sep 08 2014

A067206 Numbers n such that the digits of n end in phi(n).

Original entry on oeis.org

1, 1320, 1640, 1768, 1996, 2640, 3960, 13200, 16400, 19984, 19996, 26400, 39600, 132000, 164000, 199996, 264000, 396000, 1320000, 1640000, 1999936, 2640000, 3960000, 13200000, 16400000, 16666240, 17999488, 18515584, 19999984, 19999996
Offset: 1

Views

Author

Joseph L. Pe, Feb 19 2002

Keywords

Comments

Comments from Farideh Firoozbakht, Dec 30 2006: (Start)
"(1). If n is in the sequence and 10 divides n then for each natural number k, n*10^k is in the sequence. So since 1320, 1640, 2640, 3960 & 16666240 are in the sequence, for each natural number k, 132*10^k, 164*10^k, 264*10^k, 396*10^k & 1666624*10^k are in the sequence. Hence the sequence is infinite.
"(2). If 5*10^k-1 is prime then 4*(5*10^k-1) is in the sequence. So 4*A093945 is a subsequence of this sequence.
"(3). If p=125*10^k-1 is prime then 16*p is in the sequence. For k = 1, 4, 5, 8, 13, 19, 25, 26, 76, 88, 167, 290, 389, ... p is prime.
"(4). If p=3125*10^k-1 is prime then 64*p is in the sequence. For k = 1, 3, 9, 33, 121, 223, 357, 363, 447, ... p is prime." (End)

Examples

			The digits of 1768 end in phi(1768) = 768, so 1768 is a term of the sequence.
		

References

  • Pickover, C. "Wonders of Numbers". Oxford Univ. Press, 2001.

Crossrefs

Cf. A066663. - R. J. Mathar, Sep 30 2008

Programs

  • Mathematica
    (*returns true if a ends in b, false o.w.*) f[a_, b_] := Module[{c, d, e, g, h, i, r}, r = False; c = ToString[a]; d = ToString[b]; e = StringLength[c]; g = StringPosition[c, d]; h = Length[g]; If[h > 0, i = g[[h]]; If[i[[2]] == e, r = True]]; r]; Select[Range[10^5], f[ #, EulerPhi[ # ]] &]

Extensions

More terms from Farideh Firoozbakht, Dec 30 2006

A295988 Numbers k such that (10^k)/2 - 1 is prime.

Original entry on oeis.org

3, 4, 5, 7, 15, 55, 211, 391, 595, 3461, 5029, 5220, 5333, 8073, 15797, 16132, 21457, 29283, 78791, 85143, 179973, 211030, 445774, 464844, 511057
Offset: 1

Views

Author

Patrick A. Thomas, Dec 02 2017

Keywords

Examples

			499, 4999, 49999, 4999999 are prime, while 4, 49, 499999, 49999999 are composite.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^3], PrimeQ[10^#/2 - 1] &] (* Michael De Vlieger, Dec 02 2017 *)
  • PARI
    isok(n) = isprime(10^n/2 - 1); \\ Michel Marcus, Dec 02 2017

Formula

a(n) = 1 + A056712(n). - Omar E. Pol, Dec 02 2017

Extensions

a(7)-a(25) from Michel Marcus and Omar E. Pol, Dec 02 2017
Showing 1-3 of 3 results.