A107666 Primes having only {4, 6, 9} as digits.
449, 499, 4649, 4969, 4999, 6449, 6469, 6949, 9649, 9949, 44449, 44699, 46499, 46649, 49499, 49669, 49999, 64499, 64969, 66449, 66499, 66949, 69499, 94649, 94949, 94999, 96469, 99469, 444449, 444469, 444649, 446969, 449699, 464699, 464999, 466649, 469649, 469969
Offset: 1
Examples
From _K. D. Bajpai_, Sep 08 2014: (Start) 4649 is a term because it is a prime having only semiprime digits 4, 6 and 9. 6469 is a term because it is a prime having only semiprime digits 4, 6 and 9. 449 is the smallest prime comprising only semiprime digits 4, 6 or 9. (End)
Links
- Jason Bard, Table of n, a(n) for n = 1..10000 (first 2069 terms from K. D. Bajpai)
- Index to entries for primes with digits in a given set
Crossrefs
Programs
-
Maple
N:= 4: Dgts:= {4, 6, 9}: A:= NULL: for d from 1 to N do K:= combinat[cartprod]([Dgts minus {0}, Dgts $(d-1)]); while not K[finished] do L:= K[nextvalue](); x:= add(L[i]*10^(d-i), i=1..d); if isprime(x) then A:= A, x fi od od: A; # K. D. Bajpai, Sep 08 2014
-
Mathematica
Select[Prime[Range[50000]], Intersection[IntegerDigits[#], {0, 1, 2, 3, 5, 7, 8}] == {} &] (* K. D. Bajpai, Sep 08 2014 *)
Extensions
a(35)-a(38) from K. D. Bajpai, Sep 08 2014
Comments