A067533 Numbers k such that both k - tau(k) and k + tau(k) are prime where tau(k) = A000005(k).
5, 15, 27, 33, 57, 93, 105, 165, 177, 189, 231, 237, 245, 267, 275, 285, 345, 375, 393, 425, 453, 555, 567, 573, 597, 609, 637, 651, 687, 723, 833, 933, 1005, 1025, 1095, 1167, 1209, 1221, 1227, 1293, 1311, 1431, 1445, 1479, 1491, 1527, 1551, 1563, 1573
Offset: 1
Examples
57 is a term as tau(57) = 4 and 57-4 = 53 and 57+4 = 61 are both primes.
Links
- Marius A. Burtea, Table of n, a(n) for n = 1..1128
Programs
-
Mathematica
Select[Range[2000],With[{t=DivisorSigma[0,#]},AllTrue[#+{t,-t},PrimeQ]&]] (* Harvey P. Dale, Mar 16 2025 *)
-
PARI
isok(n) = my(nd = numdiv(n)); isprime(n-nd) && isprime(n+nd); \\ Michel Marcus, Oct 12 2018
Extensions
More terms from Sascha Kurz, Mar 19 2002
Offset corrected by Alois P. Heinz, Oct 10 2018
Name changed by David A. Corneth, Oct 12 2018
Comments