cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A062408 Numbers k such that floor(Pi*k) is prime.

Original entry on oeis.org

1, 10, 12, 14, 15, 17, 19, 31, 33, 35, 36, 42, 50, 52, 57, 61, 63, 71, 73, 77, 80, 82, 84, 98, 99, 101, 117, 119, 122, 124, 138, 140, 143, 147, 159, 166, 182, 187, 189, 201, 206, 208, 210, 220, 226, 229, 241, 245, 254, 262, 264, 273, 275, 289, 290, 296, 308, 311
Offset: 0

Views

Author

Jason Earls, Jul 08 2001

Keywords

Comments

Chua, Park, & Smith prove a general result that implies that, for any m, there is a constant C(m) such that a(n+m) - a(n) < C(m) infinitely often. - Charles R Greathouse IV, Jun 30 2022

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 400], PrimeQ[Floor[Pi #]] &] (* Bruno Berselli, Sep 30 2012 *)
  • PARI
    je=[]; for(n=0,1000, if(isprime(floor(Pi*n)),je=concat(je,n),)); je
    
  • PARI
    { default(realprecision, 50); n=-1; for (m=1, 10^5, if (isprime(floor(Pi*m)), write("b062408.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 07 2009

A227794 Primes of the form floor(Pi*k^2).

Original entry on oeis.org

3, 113, 907, 3019, 3631, 5281, 6361, 7853, 8171, 11689, 14957, 16741, 17203, 20611, 33329, 36643, 38707, 63347, 68813, 96211, 115811, 126923, 128189, 129461, 169093, 172021, 234139, 241051, 248063, 301907, 319691, 340049, 367453, 380459, 382649, 387047, 448883
Offset: 1

Views

Author

K. D. Bajpai, Sep 23 2013

Keywords

Examples

			a(2)=113: Pi*6^2 = 113.09 and 113 is prime.
a(3)=907: Pi*17^2 = 907.92 and 907 is prime.
		

Crossrefs

Cf. A066643 (floor(Pi*n^2)), A067559 (n that produce primes).

Programs

  • Maple
    select(isprime, {seq(floor(Pi*n^2),n=1..1000)}); [corrected by Georg Fischer, Sep 27 2024]
  • Mathematica
    Select[Floor[Pi*Range[400]^2],PrimeQ] (* Harvey P. Dale, Dec 18 2016 *)
  • PARI
    is(n)=my(r=sqrtint((n+1)\Pi)); Pi*r^2>n && isprime(n) \\ Charles R Greathouse IV, Sep 23 2013
Showing 1-2 of 2 results.