cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067602 5^n reduced modulo 3^n.

Original entry on oeis.org

0, 2, 7, 17, 58, 209, 316, 1580, 3526, 4508, 22540, 112700, 209206, 1046030, 447181, 11801843, 30311401, 108510284, 155130931, 775654655, 391488874, 1957444370, 9787221850, 48936109250, 150537367423, 470257300634, 656709284284
Offset: 0

Views

Author

Benoit Cloitre, Jan 31 2002

Keywords

Programs

  • Magma
    [5^n mod 3^n: n in [0..30]]; // Vincenzo Librandi, Jun 24 2015
  • Maple
    a:=n->5^n mod(3^(n)): seq(a(n), n=0..26); # Zerinvary Lajos, Feb 15 2008
  • Mathematica
    Table[Mod[5^n, 3^n], {n, 0, 30}] (* Vincenzo Librandi, Jun 24 2015 *)
    Table[PowerMod[5,n,3^n],{n,0,30}] (* Harvey P. Dale, Oct 28 2019 *)
  • PARI
    for(n=0,50,print1(lift(Mod(5^n,3^n)), ", "))
    
  • PARI
    a(n)= lift(Mod(5, 3^n)^n); \\ Michel Marcus, Jun 24 2015
    
  • Sage
    [power_mod(5,n,3^n)for n in range(0,27)] # Zerinvary Lajos, Nov 28 2009