cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A078075 Duplicate of A067616.

Original entry on oeis.org

1, 7, 3, 1, 1, 4, 57, 2, 3, 1, 5, 1, 3, 1, 2, 3, 9, 1, 2, 9, 3, 1, 18, 7, 1, 2, 6, 2, 1, 35, 2, 1, 5, 84, 3, 2, 7, 1, 1, 1, 28, 2, 1, 2, 1, 2, 3, 1, 2, 19, 1, 17, 1, 1, 8, 4, 3, 1, 81, 7, 1, 154, 24, 1, 65, 7, 3, 5, 94, 7, 1, 1, 8, 32, 3, 1, 1, 1, 3, 8, 2, 2, 2, 1, 5, 1, 2, 1, 1, 1, 7, 1, 5
Offset: 1

Views

Author

Benoit Cloitre, Dec 02 2002

Keywords

A065443 Decimal expansion of Sum_{k=1..inf} 1/(2^k-1)^2.

Original entry on oeis.org

1, 1, 3, 7, 3, 3, 8, 7, 3, 6, 3, 4, 4, 1, 9, 6, 5, 9, 6, 6, 9, 6, 9, 1, 3, 3, 6, 8, 3, 0, 1, 3, 4, 7, 5, 8, 3, 8, 3, 0, 8, 4, 9, 3, 0, 9, 8, 1, 3, 8, 8, 2, 8, 8, 2, 0, 7, 0, 4, 4, 9, 3, 3, 1, 0, 4, 6, 4, 9, 3, 8, 6, 2, 5, 2, 0, 4, 0, 8, 9, 9, 8, 0, 0, 0, 5, 4, 0, 5, 0, 9, 0, 4, 2, 3, 5, 1, 3, 1, 1, 8, 4, 0, 3, 6
Offset: 1

Views

Author

N. J. A. Sloane, Nov 18 2001

Keywords

Examples

			1.1373387363441965966969133683013475838308493098...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 354-361.

Crossrefs

Programs

  • Mathematica
    RealDigits[NSum[1/(2^k - 1)^2, {k, 1, Infinity}, PrecisionGoal -> 40, AccuracyGoal -> 40, WorkingPrecision -> 500, NSumTerms -> 50, NSumExtraTerms -> 50]][[1]] (* Peter Bertok (peter(AT)bertok.com), Dec 04 2001 *)
    RealDigits[(Log[2] QPolyGamma[0, 1, 1/2] + QPolyGamma[1, 1, 1/2])/Log[2]^2 - 1, 10, 20][[1]] (* Eric W. Weisstein, Jun 02 2025 *)
  • PARI
    { default(realprecision, 2080); x=suminf(k=1, 1/(2^k - 1)^2); for (n=1, 2000, d=floor(x); x=(x-d)*10; write("b065443.txt", n, " ", d)) } \\ Harry J. Smith, Oct 19 2009

Formula

Equals Sum_{n>=1} 1/A060867(n).
From Amiram Eldar, Oct 16 2022: (Start)
Equals Sum_{k>=1} k/(2^(k+1)-1).
Equals A066766 - A065442. (End)
Equals Sum_{n >= 1} q^(n^2)*( (n - 1) + q^n - (n - 1)*q^(2*n) )/(1 - q^n)^2 evaluated at q = 1/2 (see A065608). - Peter Bala, Oct 16 2022

Extensions

More terms from Peter Bertok (peter(AT)bertok.com), Dec 04 2001
Showing 1-2 of 2 results.