A067667 a(n) = (2^n)!/2^(2^n-1).
1, 1, 3, 315, 638512875, 122529844256906551386796875, 13757108753595648665519665029568345104465749222289382342659100341796875
Offset: 0
Keywords
Links
- Jianing Song, Table of n, a(n) for n = 0..8
- Mark R. Brown, Implementation and analysis of binomial queue algorithms, SIAM Journal on Computing, 1978, 7(3):298-319.
- Alexander Karpov, A theory of knockout tournament seedings, Heidelberg University, AWI Discussion Paper Series, No. 600.
- Zhujun Zhang, A Note on Counting Binomial Heaps, ResearchGate, June 2019.
Programs
-
Magma
[Factorial(2^n)/2^(2^n-1): n in [1..6]]; // Vincenzo Librandi, Aug 10 2015
-
Mathematica
Table[(2^n)! / 2^(2^n - 1), {n, 6}] (* Vincenzo Librandi, Aug 10 2015 *)
-
PARI
a(n) = (2^n)!/2^(2^n-1) \\ Jianing Song, Jul 15 2021
Formula
From Alexander Karpov, Aug 09 2015: (Start)
a(n) = (2^n)!/2^(2^n-1).
a(n) = (2^n-1)!!*a(n-1).
a(n) = binomial(2^n-1, 2^(n-1)-1)*(a(n-1))^2 = A069954(n-1) * (a(n-1))^2.
(End)
a(n) = A049606(2^n). - Zhujun Zhang, Jun 16 2019
a(n) = Product_{odd k < 2^n} k^(n - floor(log_2(k))). - Harry Richman, May 18 2023
Extensions
a(0) prepended by Jianing Song, Jul 15 2021
Comments