Original entry on oeis.org
1, 2, 44, 561329, 9549959, 42932384, 13044904289, 277344139214, 2045466215756534, 47702521115271164
Offset: 1
2 is a term because A067849(2) = 4 > A067849(1) = 2.
44 is a term because A067849(44) = 6 > A067869(2) = 4.
-
b(n) = {my(nb = 0, newn); while (isprime(newn=2*n+1), nb++; n = newn); nb;} \\ A067849
lista(nn) = {my(mmax = -1, mm); for (n=1, nn, if ((mm=b(n)) > mmax, mmax = mm; print1(n, ", ")););} \\ Michel Marcus, Nov 10 2018
A057331
a(n) = smallest prime p such that the first n iterates of p under x->2x+1 are all primes.
Original entry on oeis.org
2, 2, 2, 2, 2, 89, 1122659, 19099919, 85864769, 26089808579, 554688278429, 554688278429, 4090932431513069, 95405042230542329
Offset: 0
a(5) = 89 because the numbers 89, 179, 359, 719, 1439, 2879 are all primes and 89 is the first number to have this property.
See
A067849 (number of prime iterates starting from any n) and
A321058 (starting points that yield record numbers of iterates).
-
f[n_] := 2n + 1; k = 1; Do[ While[ Union[ PrimeQ[ NestList[ f, Prime[k], n]]] != {True}, k++ ]; Print[ Prime[k]], {n, 1, 9} ]
-
has(p,n)=for(k=1,n,if(!isprime(p), return(0)); p=2*p+1); isprime(p)
a(n)=forprime(p=2,, if(has(p,n), return(p))) \\ Charles R Greathouse IV, Apr 29 2015
a(11) (from the Caldwell link) sent by Peter Deleu, Hulste, Belgium, Nov 22 2004
Showing 1-2 of 2 results.
Comments