cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A348955 a(1) = 1; a(n) = Sum_{d|n, d <= sqrt(n)} a(d)^2.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 6, 1, 3, 1, 6, 2, 2, 1, 7, 2, 2, 2, 6, 1, 4, 1, 6, 2, 2, 2, 11, 1, 2, 2, 7, 1, 7, 1, 6, 3, 2, 1, 11, 2, 3, 2, 6, 1, 7, 2, 7, 2, 2, 1, 12, 1, 2, 3, 10, 2, 7, 1, 6, 2, 4, 1, 15, 1, 2, 3, 6, 2, 7, 1, 11, 6, 2, 1, 12, 2, 2, 2, 10, 1, 12
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 04 2021

Keywords

Crossrefs

Cf. A008578 (positions of 1's), A067868, A068108, A082588, A337135, A348956.

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = DivisorSum[n, a[#]^2 &, # <= Sqrt[n] &]; Table[a[n], {n, 90}]
  • PARI
    A348955(n) = if(1==n,n,sumdiv(n,d,if((d*d)<=n,A348955(d)^2,0))); \\ Antti Karttunen, Nov 05 2021

Formula

G.f.: Sum_{k>=1} a(k)^2 * x^(k^2) / (1 - x^k).
a(4^n) = A067868(n).

A058039 a(n) = a(n-1) + 2*a(floor(n/2)) if n > 0, otherwise 1.

Original entry on oeis.org

1, 3, 9, 15, 33, 51, 81, 111, 177, 243, 345, 447, 609, 771, 993, 1215, 1569, 1923, 2409, 2895, 3585, 4275, 5169, 6063, 7281, 8499, 10041, 11583, 13569, 15555, 17985, 20415, 23553, 26691, 30537, 34383, 39201, 44019, 49809, 55599, 62769, 69939, 78489, 87039
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 16 2002

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [n le 2 select 3^n else Self(n-1) + 2*Self(Floor(n/2)): n in [1..51]]; // G. C. Greubel, Feb 10 2021
  • Mathematica
    a[n_]:= a[n] = If[n==0, 1, a[n-1] + 2*a[Floor[n/2]]];
    Table[a[n], {n, 0, 50}] (* G. C. Greubel, Feb 10 2021 *)
  • PARI
    a(n) = if (n==0, 1, a(n-1)+2*a(n\2)); \\ Michel Marcus, Feb 04 2021
    
  • Python
    def a(n): return 1 if n == 0 else a(n-1) + 2*a(n//2)
    print([a(n) for n in range(44)]) # Michael S. Branicky, Feb 04 2021
    

Formula

a(n) = 1 + 2 * Sum_{k=1..n} a(floor(k/2)). - Ilya Gutkovskiy, Aug 15 2021

Extensions

Name corrected by and more terms from Michael S. Branicky, Feb 04 2021
Showing 1-2 of 2 results.