A067962 a(n) = F(n+2)*(Product_{i=1..n+1} F(i))^2 where F(i)=A000045(i) is the i-th Fibonacci number.
1, 2, 12, 180, 7200, 748800, 204422400, 145957593600, 272940700032000, 1336044726656640000, 17122749216831498240000, 574502481723130428948480000, 50464872497041500009263431680000, 11605406728144633757130311383449600000
Offset: 0
Examples
Neighbors for n=4 (dots represent spaces, circles represent grid points): O..O..O..O .\..\..\.. ..\..\..\. O..O..O..O .\..\..\.. ..\..\..\. O..O..O..O .\..\..\.. ..\..\..\. O..O..O..O
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..68
- Sergey Kitaev and Toufik Mansour, The problem of the pawns, arXiv:math/0305253 [math.CO], 2003; Annals of Combinatorics 8 (2004) 81-91.
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 69, 421.
Crossrefs
Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.
Programs
-
Haskell
a067962 n = a067962_list !! n a067962_list = 1 : zipWith (*) a067962_list (drop 2 a001654_list) -- Reinhard Zumkeller, Sep 24 2015
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, (F-> F(n+1)*F(n+2)*a(n-1))(combinat[fibonacci])) end: seq(a(n), n=0..14); # Alois P. Heinz, May 20 2019
-
Mathematica
Rest[Table[With[{c=Fibonacci[Range[n]]},(Times@@Most[c])^2 Last[c]],{n,15}]] (* Harvey P. Dale, Dec 17 2013 *)
-
PARI
a(n)=fibonacci(n+2)*prod(i=0,n,fibonacci(i+1))^2
Formula
a(n) = (F(3) * F(4) * ... * F(n+1))^2 * F(n+2), where F(n) = A000045(n) is the n-th Fibonacci number.
a(n) is asymptotic to C^2*((1+sqrt(5))/2)^((n+2)^2)/(5^(n+3/2)) where C=1.226742010720353244... is the Fibonacci Factorial Constant, see A062073. - Vaclav Kotesovec, Oct 28 2011
a(n) = a(n-1) * A001654(n+1), n > 0. - Reinhard Zumkeller, Sep 24 2015
Extensions
Edited by Dean Hickerson, Feb 15 2002
Revised by N. J. A. Sloane following comments from Benoit Cloitre, Nov 12 2003
Comments