A067998 a(n) = n^2 - 2*n.
0, -1, 0, 3, 8, 15, 24, 35, 48, 63, 80, 99, 120, 143, 168, 195, 224, 255, 288, 323, 360, 399, 440, 483, 528, 575, 624, 675, 728, 783, 840, 899, 960, 1023, 1088, 1155, 1224, 1295, 1368, 1443, 1520, 1599, 1680, 1763, 1848, 1935, 2024, 2115, 2208, 2303, 2400, 2499, 2600, 2703, 2808, 2915, 3024, 3135, 3248, 3363
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Wikipedia, Monty Hall problem.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Haskell
a067998 n = n * (n - 2) a067998_list = scanl (+) 0 [-1, 1 ..] -- Reinhard Zumkeller, Aug 26 2013
-
Magma
[n^2-2*n : n in [0..50]]; // Wesley Ivan Hurt, Sep 04 2014
-
Maple
A067998:=n->n^2-2*n: seq(A067998(n), n=0..50); # Wesley Ivan Hurt, Sep 04 2014
-
Mathematica
Table[ n^2 - 2*n, {n, 0, 60} ] (* George E. Antoniou *) LinearRecurrence[{3, -3, 1}, {0, -1, 0}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 23 2012 *)
-
PARI
a(n)=n^2-2*n;
-
PARI
concat(0, Vec(x*(3*x-1)/(1-x)^3 + O(x^100))) \\ Altug Alkan, Oct 30 2015
Formula
G.f.: x*(3*x-1)/(1-x)^3. - Paul Barry, Mar 27 2007
E.g.f.: exp(x)*(x^2-x). - Paul Barry, Mar 27 2007
a(n) = 2*n + a(n-1) - 3 (with a(0)=0). - Vincenzo Librandi, Aug 08 2010
From Amiram Eldar, Feb 17 2023: (Start)
Sum_{n>=3} 1/a(n) = 3/4.
Sum_{n>=3} (-1)^(n+1)/a(n) = 1/4. (End)
Extensions
Edited and extended by Robert G. Wilson v, Feb 08 2002
Comments