cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A068007 Least number k such that the number of primes of the form [k/j] for j=1..k (A068050) is n, or zero if impossible.

Original entry on oeis.org

1, 2, 5, 7, 10, 11, 15, 21, 0, 22, 23, 31, 34, 38, 35, 45, 50, 46, 47, 53, 62, 58, 59, 67, 69, 84, 70, 71, 79, 83, 87, 92, 93, 101, 94, 105, 95, 106, 107, 116, 117, 122, 118, 125, 119, 134, 135, 139, 146, 142, 149, 143, 156, 155, 158, 159, 171, 166, 167, 176, 175, 185
Offset: 0

Views

Author

Robert G. Wilson v, Feb 12 2002

Keywords

Comments

a(n) = 0 for n = 8, 94, 103, 122, 180, 283, 311, 353, 355, 398, ...

Crossrefs

Cf. A068050.

Programs

  • Mathematica
    f[n_] := Count[ PrimeQ[ Floor[ n/Table[i, {i, Floor[n/2]} ]]], True]; a = Table[0, {100} ]; Do[b = f[n]; If[b < 100 && a[[b + 1]] == 0, a[[b + 1]] = n], {n, 1, 300}]; a

Extensions

Name corrected by Sean A. Irvine, Jan 18 2024

A205745 a(n) = card { d | d*p = n, d odd, p prime }.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 1, 2, 0, 1, 1, 2, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 0, 1, 1, 2, 0, 2, 1, 1, 0, 1, 1, 2, 0, 2, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 0, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 2
Offset: 1

Views

Author

Peter Luschny, Jan 30 2012

Keywords

Comments

Equivalently, a(n) is the number of prime divisors p|n such that n/p is odd. - Gus Wiseman, Jun 06 2018

Crossrefs

Programs

  • Haskell
    a205745 n = sum $ map ((`mod` 2) . (n `div`))
       [p | p <- takeWhile (<= n) a000040_list, n `mod` p == 0]
    -- Reinhard Zumkeller, Jan 31 2012
  • Mathematica
    a[n_] := Sum[ Boole[ OddQ[d] && PrimeQ[n/d] ], {d, Divisors[n]} ]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jun 27 2013 *)
  • PARI
    a(n)=if(n%2,omega(n),n%4/2) \\ Charles R Greathouse IV, Jan 30 2012
    
  • Sage
    def A205745(n):
        return sum((n//d) % 2 for d in divisors(n) if is_prime(d))
    [A205745(n) for n in (1..105)]
    

Formula

O.g.f.: Sum_{p prime} x^p/(1 - x^(2p)). - Gus Wiseman, Jun 06 2018
Sum_{k=1..n} a(k) = (n/2) * (log(log(n)) + B) + O(n/log(n)), where B is Mertens's constant (A077761). - Amiram Eldar, Sep 21 2024

A067514 Number of distinct primes of the form floor(n/k) for 1 <= k <= n.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 3, 1, 2, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 5, 6, 2, 3, 4, 4, 4, 5, 4, 5, 3, 4, 5, 6, 4, 5, 5, 6, 4, 5, 4, 5, 5, 5, 6, 7, 3, 4, 4, 5, 6, 7, 5, 6, 5, 6, 7, 8, 4, 5, 5, 5, 4, 5, 6, 7, 7, 8, 7, 8, 4, 5, 5, 5, 5, 6, 7, 8, 6, 6, 7, 8, 4, 5, 6, 7, 7, 8, 5, 6, 7, 8, 9, 10, 6, 7, 5, 6, 5, 6, 6
Offset: 1

Views

Author

Amarnath Murthy, Feb 12 2002

Keywords

Examples

			a(10)=3 as floor(10/k) for k = 1 to 10 is 10,5,3,2,2,1,1,1,1,1, respectively; the 3 primes are 5,3,2.
		

Crossrefs

Cf. A068050.
Cf. A055086 (number of distinct integers with same form). - Michel Marcus, May 04 2019

Programs

  • Mathematica
    a[n_] := Length[Union[Select[Table[Floor[n/i], {i, 1, n}], PrimeQ]]]
    Table[PrimeNu[Product[Floor[n/k], {k, 1, n}]], {n, 1, 100}] (* G. C. Greubel, May 08 2017 *)
  • PARI
    a(n) = #select(x->isprime(x), Set(vector(n, k, n\k))); \\ Michel Marcus, May 04 2019
    
  • PARI
    a(n)=my(s=sqrtint(n+1)); sum(k=1,s,isprime(n\k))+primepi(n\s-1) \\ Charles R Greathouse IV, Nov 05 2021

Formula

a(n) = A001221(A010786(n)). - Enrique Pérez Herrero, Feb 26 2012
a(n) = 4*n^(1/2)/log(n) + O(n^(1/2)/(log(n))^2). - Randell Heyman, Oct 06 2022

Extensions

Edited by Dean Hickerson, Feb 12 2002
Showing 1-3 of 3 results.