cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A068191 Numbers n such that A067734(n)=0; complement of A002473; at least one prime-factor of n is larger than 7, it has 2 decimal digits.

Original entry on oeis.org

11, 13, 17, 19, 22, 23, 26, 29, 31, 33, 34, 37, 38, 39, 41, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 109, 110, 111, 113, 114
Offset: 1

Views

Author

Labos Elemer, Feb 19 2002

Keywords

Comments

Also numbers n such that A198487(n) = 0 and A107698(n) = 0. - Jaroslav Krizek, Nov 04 2011
A086299(a(n)) = 0. - Reinhard Zumkeller, Apr 01 2012
A262401(a(n)) < a(n). - Reinhard Zumkeller, Sep 25 2015
Numbers not in A007954. - Mohammed Yaseen, Sep 13 2022

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a068191 n = a068191_list !! (n-1)
    a068191_list = map (+ 1) $ elemIndices 0 a086299_list
    -- Reinhard Zumkeller, Apr 01 2012
    
  • Mathematica
    Select[Range@120, Last@Map[First, FactorInteger@#] > 7 &] (* Vincenzo Librandi, Sep 19 2016 *)
  • Python
    from sympy import integer_log
    def A068191(n):
        def f(x):
            c = n
            for i in range(integer_log(x,7)[0]+1):
                i7 = 7**i
                m = x//i7
                for j in range(integer_log(m,5)[0]+1):
                    j5 = 5**j
                    r = m//j5
                    for k in range(integer_log(r,3)[0]+1):
                        c += (r//3**k).bit_length()
            return c
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Sep 16 2024

A068187 a(n) is the smallest number such that the product of its decimal digits equals n^n, or 0 if no solutions exist.

Original entry on oeis.org

1, 4, 39, 488, 55555, 88999, 7777777, 88888888, 999999999, 25555555555888, 0, 88888888999999, 0, 4777777777777778888, 35555555555555559999999, 2888888888888888888888, 0, 888888999999999999999999, 0, 2555555555555555555558888888888888, 37777777777777777777779999999999
Offset: 1

Views

Author

Labos Elemer, Feb 18 2002

Keywords

Comments

a(n) = 0 if and only if n has a prime factor > 7. If n > 1 has no prime factor > 7, let n^n = 2^a*3^b*5^c*7^d. Let m(x) denote the number of digit x in a(n). Then a(n) is a number whose digits are nondecreasing and defined as follows. m(2) = 1 if a mod 3 == 1 and 0 otherwise, m(3) = 1 if b mod 2 == 1 and 0 otherwise, m(4) = 1 if a mod 3 == 2 and 0 otherwise, m(5) = c, m(6) = 0, m(7) = d, m(8) = floor(a/3), m(9) = floor(b/2). - Chai Wah Wu, Aug 12 2017

Crossrefs

Programs

  • Python
    from sympy import factorint
    def A068187(n):
        if n == 1:
            return 1
        pf = factorint(n)
        return 0 if max(pf) > 7 else int(''.join(sorted(''.join(str(a)*(n*b) for a,b in pf.items()).replace('222','8').replace('22','4').replace('33','9')))) # Chai Wah Wu, Aug 13 2017

Extensions

Edited by Dean Hickerson and Henry Bottomley, Mar 07 2002

A069468 Number of ways writing n! as a product of some other numbers which has no digits equal to 1.

Original entry on oeis.org

0, 1, 3, 17, 68, 807, 5310, 121536, 2775630, 48782385, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Labos Elemer, Mar 25 2002

Keywords

Examples

			n=4, 4!=24, A067734(24)=17 and the 17 solutions are as follows: {38,46,64,83,226,234,243,262,324,342,423,432,622,2223,2232,2322,3222}.
		

Crossrefs

Formula

a(n) = A067734(n!) = A067734(A000142(n)).
a(n) = 0 if n>10 since A068184 and A067185 are complete sequences.

Extensions

More terms from Max Alekseyev, Sep 19 2009
Showing 1-3 of 3 results.