cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068231 Primes congruent to 11 mod 12.

Original entry on oeis.org

11, 23, 47, 59, 71, 83, 107, 131, 167, 179, 191, 227, 239, 251, 263, 311, 347, 359, 383, 419, 431, 443, 467, 479, 491, 503, 563, 587, 599, 647, 659, 683, 719, 743, 827, 839, 863, 887, 911, 947, 971, 983, 1019, 1031, 1091, 1103, 1151, 1163, 1187, 1223
Offset: 1

Views

Author

Ferenc Adorjan (fadorjan(AT)freemail.hu), Feb 22 2002

Keywords

Comments

Intersection of A002145 (primes of form 4n+3) and A003627 (primes of form 3n-1). So these are both Gaussian primes with no imaginary part and Eisenstein primes with no imaginary part. - Alonso del Arte, Mar 29 2007
Is this the same sequence as A141187 (apart from the initial 3)?
If p is prime of the form 2*a(n)^k + 1, then p divides a cyclotomic number Phi(a(n)^k, 2). - Arkadiusz Wesolowski, Jun 14 2013
Also a(n) = primes p dividing A014138((p-3)/2), where A014138(n) = Partial sums of (Catalan numbers starting 1,2,5,...), cf. A000108. - Alexander Adamchuk, Dec 27 2013

Crossrefs

Programs

  • MATLAB
    %4n-1 and 6n-1 primes
    n = 1:10000;
    n2 = 4*n-1;
    n3 = 3*n-1;
    p = primes(max(n2));
    Res = intersect(n2,n3);
    Res2 = intersect(Res,p);
    % Jesse H. Crotts, Sep 25 2016
  • Magma
    [p: p in PrimesUpTo(1500) | p mod 12 eq 11 ]; // Vincenzo Librandi, Aug 14 2012
    
  • Mathematica
    Select[Prime/@Range[250], Mod[ #, 12]==11&]
    Select[Range[11,1500,12],PrimeQ] (* Harvey P. Dale, Sep 15 2023 *)
  • PARI
    for(i=1,250, if(prime(i)%12==11, print(prime(i))))
    

Extensions

Edited by Dean Hickerson, Feb 27 2002