cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 40 results. Next

A270596 Primes p congruent to 11 mod 12 (A068231), such that there exists a nonzero element c of GF(p), such that the element c, c-1 and -1 generate a proper subgroup of the multiplicative group.

Original entry on oeis.org

131, 191, 239, 251, 311, 419, 431, 491, 599, 647, 659, 683, 743, 827, 911, 971, 1031, 1091, 1103, 1151, 1163, 1223, 1259, 1451, 1499, 1511, 1559, 1571, 1583, 1607, 1667, 1787, 1811, 1847, 1871, 1931, 2003, 2087, 2111, 2243, 2267, 2339, 2351, 2399, 2411, 2423, 2531, 2591, 2663, 2687, 2699, 2711, 2843, 2927, 2939, 3011
Offset: 1

Views

Author

Michel Marcus, Mar 20 2016

Keywords

Comments

P. Cameron shows that "primes congruent to 1 (mod 3) and greater than 7" (see A002476) and "primes congruent to 1 (mod 4) and greater than 5" (see A002144) also have this property.

Crossrefs

Programs

  • PARI
    { forprime(p=11, 10^6,
        if ( p%12 != 11, next() );
        for (c=2, p-2,
            my( v = vector(p-1) );
            my( g0 = Mod(c, p),  rc0 = znorder(g0) );
            if ( rc0 == p - 1,  next() );
            if ( znorder( -g0 ) == p - 1,  next() );
            my( g1 = Mod(c-1, p),  rc1 = znorder(g1) );
            if ( rc1 == p - 1,  next() );
            if ( znorder( -g1 ) == p - 1,  next() );
            if ( znorder( g0*g1 ) == p - 1,  next() );
            if ( znorder( -g0*g1 ) == p - 1,  next() );
            for (x0 = 0, rc0,
                my ( p0 = g0^x0,  z = p0 );
                for (x1 = 0, rc1,
                    v[lift(z)] = 1;
                    v[p - lift(z)] = 1;
                    z * = g1;
                );
            );
            my( s = sum(k=1,#v,v[k]) );
            if ( s < p - 1,  print1(p,", "); break() );
        );
    ); } \\ Joerg Arndt, Mar 20 2016

Extensions

Terms > 500 by Joerg Arndt, Mar 20 2016

A014138 Partial sums of (Catalan numbers starting 1, 2, 5, ...).

Original entry on oeis.org

0, 1, 3, 8, 22, 64, 196, 625, 2055, 6917, 23713, 82499, 290511, 1033411, 3707851, 13402696, 48760366, 178405156, 656043856, 2423307046, 8987427466, 33453694486, 124936258126, 467995871776, 1757900019100
Offset: 0

Views

Author

Keywords

Comments

Number of paths starting from the root in all ordered trees with n+1 edges (a path is a nonempty tree with no vertices of outdegree greater than 1). Example: a(2)=8 because the five trees with three edges have altogether 1+0+2+2+3=8 paths hanging from the roots. - Emeric Deutsch, Oct 20 2002
a(n) is the sum of the mean maximal pyramid size over all Dyck (n+1)-paths. Also, a(n) = sum of the mean maximal sawtooth size over all Dyck (n+1)-paths. A pyramid (resp. sawtooth) in a Dyck path is a subpath of the form U^k D^k (resp. (UD)^k) with k>=1 and k is its size. For example, the maximal pyramids in the Dyck path uUUDD|UD|UDdUUDD are indicated by uppercase letters (and separated by a vertical bar). Their sizes are 2,1,1,2 left to right and the mean maximal pyramid size of the path is 6/4 = 3/2. Also, the mean maximal sawtooth size of this path is (1+2+1)/3 = 4/3. - David Callan, Jun 07 2006
p^2 divides a(p-1) for prime p of form p=6k+1 (A002476(k)). - Alexander Adamchuk, Jul 03 2006
p^2 divides a(p^2-1) for prime p>3. p^2 divides a(p^3-1) for prime p=7,13,19,... prime p in the form p=6k+1. - Alexander Adamchuk, Jul 03 2006
Row sums of triangle A137614. - Gary W. Adamson, Jan 30 2008
Equals INVERTi transform of A095930: (1, 4, 15, 57, 220, 859, ...). - Gary W. Adamson, May 15 2009
a(n) < A000108(n+1), therefore A176137(n) <= 1. - Reinhard Zumkeller, Apr 10 2010
a(n) is also the sum of the numbers in Catalan's triangle (A009766) from row 0 to row n. - Patrick Labarque, Jul 27 2010
Equals the Catalan sequence starting (1, 1, 2, ...) convolved with A014137 starting (1, 2, 4, 9, ...). - Gary W. Adamson, May 20 2013
p divides a((p-3)/2) for primes {11,23,47,59,...} = A068231 primes congruent to 11 mod 12. - Alexander Adamchuk, Dec 27 2013
a(n) is the number of parking functions of size n avoiding the patterns 132, 213, and 231. - Lara Pudwell, Apr 10 2023

Crossrefs

Programs

  • Haskell
    a014138 n = a014138_list !! n
    a014138_list = scanl1 (+) a000108_list  -- Reinhard Zumkeller, Mar 01 2013
    
  • Maple
    a:=n->sum((binomial(2*j,j)/(j+1)),j=1..n): seq(a(n), n=0..24); # Zerinvary Lajos, Dec 01 2006
    # Second program:
    A014138 := series(exp(2*x)*(BesselI(0, 2*x)/2 - BesselI(1, 2*x)) + exp(x)*(3/2*int(BesselI(0, 2*x)*exp(x), x) - 1/2), x = 0, 26):
    seq(n!*coeff(A014138, x, n), n = 0 .. 24); # Mélika Tebni, Aug 31 2024
  • Mathematica
    Table[Sum[(2k)!/k!/(k+1)!,{k,1,n}],{n,1,70}] (* Alexander Adamchuk, Jul 03 2006 *)
    Join[{0},Accumulate[CatalanNumber[Range[30]]]] (* Harvey P. Dale, Jan 25 2013 *)
    CoefficientList[Series[(1 - 2 x - (1 - 4 x)^(1/2))/(2 x (1 - x)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 21 2015 *)
    a[0] := 0; a[n_] := Sum[CatalanNumber[k], {k, 1, n}]; Table[a[n], {n,0,50}] (* G. C. Greubel, Jan 14 2017 *)
  • PARI
    Vec((1-2*x-(1-4*x)^(1/2))/(2*x*(1-x))) \\ Charles R Greathouse IV, Feb 11 2011
    
  • Python
    from _future_ import division
    A014138_list, b, s = [0], 1, 0
    for n in range(1,10**2):
        s += b
        A014138_list.append(s)
        b = b*(4*n+2)//(n+2) # Chai Wah Wu, Jan 28 2016

Formula

a(n) = A014137(n)-1.
G.f.: (1-2*x-sqrt(1-4x))/(2x(1-x)) = (C(x)-1)/(1-x) where C(x) is the generating function for the Catalan numbers. - Rocio Blanco, Apr 02 2007
a(n) = Sum_{k=1..n} A000108(k). - Alexander Adamchuk, Jul 03 2006
Binomial transform of A005554: (1, 2, 3, 6, 13, 30, 72, ...). - Gary W. Adamson, Nov 23 2007
D-finite with recurrence: (n+1)*a(n) + (1-5n)*a(n-1) + 2*(2n-1)*a(n-2) = 0. - R. J. Mathar, Dec 14 2011
Equals the Catalan sequence starting (1, 1, 2, ...) convolved with A014137 starting (1, 2, 4, 9, ...). - Gary W. Adamson, May 20 2013
G.f.: 1/x - G(0)/(1-x)/x, where G(k) = 1 - x/(1 - x/(1 - x/(1 - x/G(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Jul 17 2013
G.f.: 1/x - T(0)/(2*x*(1-x)), where T(k) = 2*x*(2*k+1)+ k+2 - 2*x*(k+2)*(2*k+3)/T(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 27 2013
a(n) ~ 2^(2*n+2)/(3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Dec 10 2013
a(n) = Sum_{i+jA000108. - Yuchun Ji, Jan 10 2019
E.g.f.: exp(2*x)*(BesselI(0, 2*x)/2 - BesselI(1, 2*x)) + exp(x)*(3/2*Integral_{x=-oo..oo} BesselI(0,2*x)*exp(x) dx - 1/2). - Mélika Tebni, Aug 31 2024

Extensions

Edited by Max Alekseyev, Sep 13 2009 (including adding an initial 0)
Definition edited by N. J. A. Sloane, Oct 03 2009

A007528 Primes of the form 6k-1.

Original entry on oeis.org

5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1

Views

Author

Keywords

Comments

For values of k see A024898.
Also primes p such that p^q - 2 is not prime where q is an odd prime. These numbers cannot be prime because the binomial p^q = (6k-1)^q expands to 6h-1 some h. Then p^q-2 = 6h-1-2 is divisible by 3 thus not prime. - Cino Hilliard, Nov 12 2008
a(n) = A211890(3,n-1) for n <= 4. - Reinhard Zumkeller, Jul 13 2012
There exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - Ralf Steiner, May 17 2018
From Bernard Schott, Feb 14 2019: (Start)
A theorem due to Andrzej Mąkowski: every integer greater than 161 is the sum of distinct primes of the form 6k-1. Examples: 162 = 5 + 11 + 17 + 23 + 47 + 59; 163 = 17 + 23 + 29 + 41 + 53. (See Sierpiński and David Wells.)
{2,3} Union A002476 Union {this sequence} = A000040.
Except for 2 and 3, all Sophie Germain primes are of the form 6k-1.
Except for 3, all the lesser of twin primes are also of the form 6k-1.
Dirichlet's theorem on arithmetic progressions states that this sequence is infinite. (End)
For all elements of this sequence p=6*k-1, there are no (x,y) positive integers such that k=6*x*y-x+y. - Pedro Caceres, Apr 06 2019

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • A. Mąkowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 125-126.
  • Wacław Sierpiński, Elementary Theory of Numbers, p. 144, Warsaw, 1964.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition, 1997, p. 127.

Crossrefs

Intersection of A016969 and A000040.
Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), this sequence (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), A141849 (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).
Cf. A001359 (lesser of twin primes), A005384 (Sophie Germain primes).

Programs

  • GAP
    Filtered(List([1..100],n->6*n-1),IsPrime); # Muniru A Asiru, May 19 2018
  • Haskell
    a007528 n = a007528_list !! (n-1)
    a007528_list = [x | k <- [0..], let x = 6 * k + 5, a010051' x == 1]
    -- Reinhard Zumkeller, Jul 13 2012
    
  • Maple
    select(isprime,[seq(6*n-1,n=1..100)]); # Muniru A Asiru, May 19 2018
  • Mathematica
    Select[6 Range[100]-1,PrimeQ]  (* Harvey P. Dale, Feb 14 2011 *)
  • PARI
    forprime(p=2, 1e3, if(p%6==5, print1(p, ", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    forprimestep(p=5,1000,6, print1(p", ")) \\ Charles R Greathouse IV, Mar 03 2025
    

Formula

A003627 \ {2}. - R. J. Mathar, Oct 28 2008
Conjecture: Product_{n >= 1} ((a(n) - 1) / (a(n) + 1)) * ((A002476(n) + 1) / (A002476(n) - 1)) = 3/4. - Dimitris Valianatos, Feb 11 2020
From Vaclav Kotesovec, May 02 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = 9*A175646/Pi^2 = 1/1.060548293.... =4/(3*A333240).
Product_{k>=1} (1 + 1/a(k)^2) = A334482.
Product_{k>=1} (1 - 1/a(k)^3) = A334480.
Product_{k>=1} (1 + 1/a(k)^3) = A334479. (End)
Legendre symbol (-3, a(n)) = -1 and (-3, A002476(n)) = +1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - Wolfdieter Lang, Mar 03 2021

A068228 Primes congruent to 1 (mod 12).

Original entry on oeis.org

13, 37, 61, 73, 97, 109, 157, 181, 193, 229, 241, 277, 313, 337, 349, 373, 397, 409, 421, 433, 457, 541, 577, 601, 613, 661, 673, 709, 733, 757, 769, 829, 853, 877, 937, 997, 1009, 1021, 1033, 1069, 1093, 1117, 1129, 1153, 1201, 1213, 1237, 1249, 1297
Offset: 1

Views

Author

Ferenc Adorjan (fadorjan(AT)freemail.hu), Feb 22 2002

Keywords

Comments

This has several equivalent definitions (cf. the Tunnell link)
Also primes of the form x^2 + 9y^2 (discriminant -36). - T. D. Noe, May 07 2005 [corrected by Klaus Purath, Jan 18 2023]
Also primes of the form x^2 - 12y^2 (discriminant 48). Cf. A140633. - T. D. Noe, May 19 2008 [corrected by Klaus Purath, Jan 18 2023]
Also primes of the form x^2 + 4*x*y + y^2.
Also primes of the form x^2 + 2*x*y - 2*y^2 (cf. A084916).
Also primes of the form x^2 + 6*x*y - 3*y^2.
Also primes of the form 4*x^2 + 8*x*y + y^2.
Also primes of the form u^2 - 3v^2 (use the transformation {u,v} = {x+2y,y}). - Tito Piezas III, Dec 28 2008
Sequence lists generalized cuban primes (A007645) that are the sum of 2 nonzero squares. - Altug Alkan, Nov 25 2015
Yasutoshi Kohmoto observes that prevprime(a(n)) is more frequently congruent to 3 (mod 4) than to 1. This bias can be explained by the possible prime constellations and gaps: To have the same residue mod 4 as a prime in the list, the previous prime must be at a gap of 4 or 8 or 12 ..., but a gap of 4 is impossible because 12k + 1 - 4 is divisible by 3, and gaps >= 12 are very rare for small primes. To have the residue 3 (mod 4) the previous prime can be at a gap of 2 or 6 with no a priori divisibility property. However, this bias tends to disappear as the primes (and average prime gaps) grow bigger: for primes < 10^5, the ratio is about 35% vs. 65% as the above simple explanation suggests, but considering primes up to 10^8 yields a ratio of about 41% vs. 59%. It can be expected that the ratio asymptotically tends to 1:1. - M. F. Hasler, Sep 01 2017
Also primes of the form x^2 - 27*y^2. - Klaus Purath, Jan 18 2023

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.

Crossrefs

Subsequence of A084916.
Subsequence of A007645.
Also primes in A084916, A020672.
Cf. A141123 (d=12), A141111, A141112 (d=65), A141187 (d=48) A038872 (d=5), A038873 (d=8), A038883 (d=13), A038889 (d=17).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Magma
    [p: p in PrimesUpTo(1400) | p mod 12 in {1}]; // Vincenzo Librandi, Jul 14 2012
    For other programs see the "Binary Quadratic Forms and OEIS" link.
  • Maple
    select(isprime, [seq(i,i=1..10000, 12)]); # Robert Israel, Nov 27 2015
  • Mathematica
    Select[Prime/@Range[250], Mod[ #, 12]==1&]
    Select[Range[13, 10^4, 12], PrimeQ] (* Zak Seidov, Mar 21 2011 *)
  • PARI
    for(i=1,250, if(prime(i)%12==1, print(prime(i))))
    
  • PARI
    forstep(p=13,10^4,12,isprime(p)&print(p)); \\ Zak Seidov, Mar 21 2011
    

Extensions

Edited by Dean Hickerson, Feb 27 2002
Entry revised by N. J. A. Sloane, Oct 18 2014 (Edited, merged with A141122, submitted by Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 05 2008).

A141123 Primes of the form -x^2+2*x*y+2*y^2 (as well as of the form 3*x^2+6*x*y+2*y^2).

Original entry on oeis.org

2, 3, 11, 23, 47, 59, 71, 83, 107, 131, 167, 179, 191, 227, 239, 251, 263, 311, 347, 359, 383, 419, 431, 443, 467, 479, 491, 503, 563, 587, 599, 647, 659, 683, 719, 743, 827, 839, 863, 887, 911, 947, 971, 983, 1019, 1031, 1091, 1103, 1151, 1163, 1187, 1223
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 05 2008

Keywords

Comments

Discriminant = 12. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac and gcd(a, b, c) = 1.
This is exactly {2} U A068231, primes congruent to 11 (mod 12). This is because the orders of imaginary quadratic fields with discriminant 12 has 1 class per genus (can be verified by the quadclassunit() function in PARI), so the primes represented by a binary quadratic form of this discriminant are determined by a congruence condition. - Jianing Song, Jun 22 2025

Examples

			a(3) = 11 because we can write 11 = -1^2 + 2*1*2 + 2*2^2 (or 11 = 3*1^2 + 6*1*1 + 2*1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
  • D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.

Crossrefs

Cf. A038872 (d=5), A038873 (d=8), A068228 (d=12, 48, or -36), A038883 (d=13), A038889 (d=17), A141111 and A141112 (d=65).
Essentially the same as A068231 and A141187.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Cf. A084917.

Programs

  • Maple
    N:= 2000:
    S:= NULL:
    for xx from 1 to floor(2*sqrt(N/3)) do
      for yy from ceil(sqrt(max(1,3*xx^2-N))) to floor(sqrt(3)*xx) do
         S:= S, 3*xx^2-yy^2;
    od od:
    sort(convert(select(isprime,{S}),list)); # Robert Israel, Jul 20 2020
  • Mathematica
    Reap[For[p = 2, p < 2000, p = NextPrime[p], If[FindInstance[p == -x^2 + 2*x*y + 2*y^2, {x, y}, Integers, 1] =!= {}, Print[p]; Sow[p]]]][[2, 1]]
    (* or: *)
    Select[Prime[Range[200]], # == 2 || # == 3 || Mod[#, 12] == 11&] (* Jean-François Alcover, Oct 25 2016, updated Oct 29 2016 *)

Extensions

More terms from Colin Barker, Apr 05 2015

A068229 Primes congruent to 7 (mod 12).

Original entry on oeis.org

7, 19, 31, 43, 67, 79, 103, 127, 139, 151, 163, 199, 211, 223, 271, 283, 307, 331, 367, 379, 439, 463, 487, 499, 523, 547, 571, 607, 619, 631, 643, 691, 727, 739, 751, 787, 811, 823, 859, 883, 907, 919, 967, 991, 1039, 1051, 1063, 1087, 1123, 1171, 1231
Offset: 1

Views

Author

Ferenc Adorjan (fadorjan(AT)freemail.hu), Feb 22 2002

Keywords

Comments

Primes of the form 3x^2 + 4y^2. - T. D. Noe, May 08 2005
It appears that all terms starting from term 103 are primes which are the sum of 5 positive (n > 0) different squares in more than one way (A193143) - Vladimir Joseph Stephan Orlovsky, Jul 16 2011.

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(1400) | p mod 12 in {7} ]; // Vincenzo Librandi, Jul 14 2012
    
  • Mathematica
    Select[Prime/@Range[250], Mod[#, 12] == 7 &]
  • PARI
    for(i=1,250, if(prime(i)%12==7, print(prime(i))))
    
  • PARI
    is_A068229(n)=n%12==7 && isprime(n) \\ then, e.g.,
    select(is_A068229, primes(250))  \\ - M. F. Hasler, Jan 25 2013

Formula

a(n) ~ 4n log n. - Charles R Greathouse IV, Dec 07 2022

Extensions

Edited by Dean Hickerson, Feb 27 2002

A040117 Primes congruent to 5 (mod 12). Also primes p such that x^4 = 9 has no solution mod p.

Original entry on oeis.org

5, 17, 29, 41, 53, 89, 101, 113, 137, 149, 173, 197, 233, 257, 269, 281, 293, 317, 353, 389, 401, 449, 461, 509, 521, 557, 569, 593, 617, 641, 653, 677, 701, 761, 773, 797, 809, 821, 857, 881, 929, 941, 953, 977, 1013, 1049, 1061, 1097, 1109, 1181, 1193
Offset: 1

Views

Author

Keywords

Comments

Odd primes of the form 2x^2-2xy+5y^2 with x and y nonnegative. - T. D. Noe, May 08 2005, corrected by M. F. Hasler, Jul 03 2025
Complement of A040116 relative to A000040. - Vincenzo Librandi, Sep 17 2012
Odd primes of the form a^2 + b^2 such that a^2 == b^2 (mod 3). - Thomas Ordowski and Charles R Greathouse IV, May 20 2015
Yasutoshi Kohmoto observes that nextprime(a(n)) is more frequently congruent to 3 (mod 4) than to 1. This bias can be explained by the possible prime constellations and gaps: To have the same residue mod 4 as a prime in the list, the next prime must be at a gap of 4 or 8 or 12..., but a gap of 4 is impossible because 12k + 5 + 4 is divisible by 3, and gaps >= 12 are very rare for small primes. To have the residue 3 (mod 4) the next prime can be at a gap of 2 or 6 with no a priori divisibility property. However, this bias tends to disappear as the primes (and average prime gaps) grow bigger: for primes < 10^5, the ratio is about 35% vs 65% (as the above simple explanation suggests), but considering primes up to 10^8 yields a ratio of about 40% vs 60%. It can be expected that the ratio asymptotically tends to 1:1. - M. F. Hasler, Sep 01 2017

Crossrefs

Equal to A243183 (primes of the form 2x^2+2xy+5y^2) except for the additional A243183(1) = 2 (and indexing of subsequent terms).

Programs

  • Magma
    [p: p in PrimesUpTo(1200) | not exists{x : x in ResidueClassRing(p) | x^4 eq 9} ]; // Vincenzo Librandi, Sep 17 2012
  • Mathematica
    Select[Prime/@Range[250], Mod[ #, 12]==5&]
    ok[p_]:= Reduce[Mod[x^4 - 9, p] == 0, x, Integers] == False;Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 17 2012 *)
  • PARI
    for(i=1,250, if(prime(i)%12==5, print(prime(i))))
    

Formula

a(n) ~ 4n log n. - Charles R Greathouse IV, May 20 2015

Extensions

More terms from Dean Hickerson, Feb 27 2002

A132232 Primes congruent to 11 (mod 30).

Original entry on oeis.org

11, 41, 71, 101, 131, 191, 251, 281, 311, 401, 431, 461, 491, 521, 641, 701, 761, 821, 881, 911, 941, 971, 1031, 1061, 1091, 1151, 1181, 1301, 1361, 1451, 1481, 1511, 1571, 1601, 1721, 1811, 1871, 1901, 1931, 2081, 2111, 2141, 2351, 2381, 2411, 2441, 2531
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2007

Keywords

Crossrefs

Programs

Formula

From Ray Chandler, Apr 07 2009: (Start)
a(n) = A158614(n)*30 + 11.
Intersection of A030430 and A007528. (End)

Extensions

Extended by Ray Chandler, Apr 07 2009

A141849 Primes congruent to 1 mod 11.

Original entry on oeis.org

23, 67, 89, 199, 331, 353, 397, 419, 463, 617, 661, 683, 727, 859, 881, 947, 991, 1013, 1123, 1277, 1321, 1409, 1453, 1607, 1783, 1871, 2003, 2069, 2113, 2179, 2267, 2311, 2333, 2377, 2399, 2531, 2663, 2707, 2729, 2861, 2927, 2971, 3037, 3169, 3191, 3257
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Conjecture: Also primes p such that ((x+1)^11-1)/x has 10 distinct irreducible factors of degree 1 over GF(p). - Federico Provvedi, Apr 17 2018
Primes congruent to 1 mod 22. - Chai Wah Wu, Apr 28 2025

Crossrefs

Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), A007528 (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), this sequence (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).

Programs

Formula

a(n) ~ 10n log n. - Charles R Greathouse IV, Jul 02 2016

A385220 Primes p such that multiplicative order of 3 modulo p is odd.

Original entry on oeis.org

2, 11, 13, 23, 47, 59, 71, 83, 107, 109, 131, 167, 179, 181, 191, 227, 229, 239, 251, 263, 277, 311, 313, 347, 359, 383, 419, 421, 431, 433, 443, 467, 479, 491, 503, 541, 563, 587, 599, 601, 647, 659, 683, 709, 719, 733, 743, 757, 827, 829, 839, 863, 887, 911, 947, 971, 983
Offset: 1

Views

Author

Jianing Song, Jun 22 2025

Keywords

Comments

The multiplicative order of 3 modulo a(n) is A385226(n).
Without 2, contained in primes congruent to 1 or 11 modulo 12 (primes p such that 3 is a quadratic residue modulo p; A097933), and contains primes congruent to 11 modulo 12 (A068231).
Conjecture: this sequence has density 1/3 among the primes.

Crossrefs

A068231 < this sequence < A045317 < A040101 < A097933 (ignoring terms 2, 3), where Ax < Ay means that Ax is a subsequence of Ay.
Complement of A301916 in {primes} \ {3}.
Cf. A385226 (the actual multiplicative orders).
Cf. other bases: A014663 (base 2), this sequence (base 3), A385221 (base 4), A385192 (base 5), A163183 (base -2), A385223 (base -3), A385224 (base -4), A385225 (base -5).

Programs

  • Mathematica
    Select[Prime[Range[200]], OddQ[MultiplicativeOrder[3, #]] &] (* Paolo Xausa, Jun 28 2025 *)
  • PARI
    isA385220(p) = isprime(p) && (p!=3) && znorder(Mod(3,p))%2
Showing 1-10 of 40 results. Next