A068230 Duplicate of A040117.
5, 17, 29, 41, 53, 89, 101, 113, 137, 149, 173, 197, 233, 257, 269, 281, 293, 317, 353
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Filtered(List([1..100],n->6*n-1),IsPrime); # Muniru A Asiru, May 19 2018
a007528 n = a007528_list !! (n-1) a007528_list = [x | k <- [0..], let x = 6 * k + 5, a010051' x == 1] -- Reinhard Zumkeller, Jul 13 2012
select(isprime,[seq(6*n-1,n=1..100)]); # Muniru A Asiru, May 19 2018
Select[6 Range[100]-1,PrimeQ] (* Harvey P. Dale, Feb 14 2011 *)
forprime(p=2, 1e3, if(p%6==5, print1(p, ", "))) \\ Charles R Greathouse IV, Jul 15 2011
forprimestep(p=5,1000,6, print1(p", ")) \\ Charles R Greathouse IV, Mar 03 2025
[p: p in PrimesUpTo(1400) | p mod 12 in {1}]; // Vincenzo Librandi, Jul 14 2012 For other programs see the "Binary Quadratic Forms and OEIS" link.
select(isprime, [seq(i,i=1..10000, 12)]); # Robert Israel, Nov 27 2015
Select[Prime/@Range[250], Mod[ #, 12]==1&] Select[Range[13, 10^4, 12], PrimeQ] (* Zak Seidov, Mar 21 2011 *)
for(i=1,250, if(prime(i)%12==1, print(prime(i))))
forstep(p=13,10^4,12,isprime(p)&print(p)); \\ Zak Seidov, Mar 21 2011
%4n-1 and 6n-1 primes n = 1:10000; n2 = 4*n-1; n3 = 3*n-1; p = primes(max(n2)); Res = intersect(n2,n3); Res2 = intersect(Res,p); % Jesse H. Crotts, Sep 25 2016
[p: p in PrimesUpTo(1500) | p mod 12 eq 11 ]; // Vincenzo Librandi, Aug 14 2012
Select[Prime/@Range[250], Mod[ #, 12]==11&] Select[Range[11,1500,12],PrimeQ] (* Harvey P. Dale, Sep 15 2023 *)
for(i=1,250, if(prime(i)%12==11, print(prime(i))))
[ p: p in PrimesUpTo(1400) | p mod 12 in {7} ]; // Vincenzo Librandi, Jul 14 2012
Select[Prime/@Range[250], Mod[#, 12] == 7 &]
for(i=1,250, if(prime(i)%12==7, print(prime(i))))
is_A068229(n)=n%12==7 && isprime(n) \\ then, e.g., select(is_A068229, primes(250)) \\ - M. F. Hasler, Jan 25 2013
[p: p in PrimesInInterval(3,2000) | IsPrime((5+p) div 2)]; // Vincenzo Librandi, Feb 25 2016
select(t -> isprime(t) and isprime((t+5)/2), [seq(i, i=5..1000, 12)]); # Robert Israel, Feb 24 2016
aa = {}; k = 5; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, Prime[n]]], {n, 1, 500}];aa Select[Prime[Range[500]],PrimeQ[(5+#)/2]&] (* Harvey P. Dale, Apr 23 2011 *)
forprime(p=2,1e4,if(p%12!=5,next);if(isprime(p\2+3),print1(p", "))) \\ Charles R Greathouse IV, Jul 16 2011
[a: n in [0..300] | IsPrime(a) where a is 2*n^2+14*n+5]; // Vincenzo Librandi, Jul 23 2012
Select[Table[2n^2+14n+5,{n,0,15001}],PrimeQ] (* Vincenzo Librandi, Jul 23 2012 *)
for (n=0, 300, if (isprime (k=2*n^2+14*n+5), print1 (k, ", "))); \\ Vincenzo Librandi, Jul 23 2012
Filtered([1..4000],n->n mod 11=1 and IsPrime(n)); # Muniru A Asiru, Apr 19 2018
[ p: p in PrimesUpTo(5000) | p mod 11 eq 1 ]; // Vincenzo Librandi, Apr 19 2011
a:=select(n->isprime(n) and modp(n,11)=1,[$1..4000]); # Muniru A Asiru, Apr 19 2018
Select[Range[1,10000,11],PrimeQ] (* Vladimir Joseph Stephan Orlovsky, May 18 2011 *)
is(n)=isprime(n) && n%11==1 \\ Charles R Greathouse IV, Jul 01 2016
forstep(n=2, 1e3, 2, if(isprime(p=11*n+1), print1(p, ", "))); \\ Altug Alkan, Apr 19 2018
Table[(Mod[Prime[n], 4] + Mod[Prime[n], 6])/2, {n, 1, 100}]
for(i=1,120,print((prime(i)%4+prime(i)%6)/2))
Comments
References
Links
Crossrefs
Programs
Mathematica
PARI
Extensions