A106856 Primes of the form x^2 + xy + 2y^2, with x and y nonnegative.
2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821
Offset: 1
A007528 Primes of the form 6k-1.
5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1
Comments
For values of k see A024898.
Also primes p such that p^q - 2 is not prime where q is an odd prime. These numbers cannot be prime because the binomial p^q = (6k-1)^q expands to 6h-1 some h. Then p^q-2 = 6h-1-2 is divisible by 3 thus not prime. - Cino Hilliard, Nov 12 2008
a(n) = A211890(3,n-1) for n <= 4. - Reinhard Zumkeller, Jul 13 2012
There exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - Ralf Steiner, May 17 2018
From Bernard Schott, Feb 14 2019: (Start)
A theorem due to Andrzej Mąkowski: every integer greater than 161 is the sum of distinct primes of the form 6k-1. Examples: 162 = 5 + 11 + 17 + 23 + 47 + 59; 163 = 17 + 23 + 29 + 41 + 53. (See Sierpiński and David Wells.)
Except for 2 and 3, all Sophie Germain primes are of the form 6k-1.
Except for 3, all the lesser of twin primes are also of the form 6k-1.
Dirichlet's theorem on arithmetic progressions states that this sequence is infinite. (End)
For all elements of this sequence p=6*k-1, there are no (x,y) positive integers such that k=6*x*y-x+y. - Pedro Caceres, Apr 06 2019
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
- A. Mąkowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 125-126.
- Wacław Sierpiński, Elementary Theory of Numbers, p. 144, Warsaw, 1964.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition, 1997, p. 127.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- F. S. Carey, On some cases of the Solutions of the Congruence z^p^(n-1)=1, mod p, Proceedings of the London Mathematical Society, Volume s1-33, Issue 1, November 1900, Pages 294-312.
- Amelia Carolina Sparavigna, The Pentagonal Numbers and their Link to an Integer Sequence which contains the Primes of Form 6n-1, Politecnico di Torino (Italy, 2021).
- Amelia Carolina Sparavigna, Binary operations inspired by generalized entropies applied to figurate numbers, Politecnico di Torino (Italy, 2021).
- Wikipedia, Dirichlet's theorem on arithmetic progressions.
Crossrefs
Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), this sequence (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), A141849 (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).
Programs
-
GAP
Filtered(List([1..100],n->6*n-1),IsPrime); # Muniru A Asiru, May 19 2018
-
Haskell
a007528 n = a007528_list !! (n-1) a007528_list = [x | k <- [0..], let x = 6 * k + 5, a010051' x == 1] -- Reinhard Zumkeller, Jul 13 2012
-
Maple
select(isprime,[seq(6*n-1,n=1..100)]); # Muniru A Asiru, May 19 2018
-
Mathematica
Select[6 Range[100]-1,PrimeQ] (* Harvey P. Dale, Feb 14 2011 *)
-
PARI
forprime(p=2, 1e3, if(p%6==5, print1(p, ", "))) \\ Charles R Greathouse IV, Jul 15 2011
-
PARI
forprimestep(p=5,1000,6, print1(p", ")) \\ Charles R Greathouse IV, Mar 03 2025
Formula
A003627 \ {2}. - R. J. Mathar, Oct 28 2008
Conjecture: Product_{n >= 1} ((a(n) - 1) / (a(n) + 1)) * ((A002476(n) + 1) / (A002476(n) - 1)) = 3/4. - Dimitris Valianatos, Feb 11 2020
From Vaclav Kotesovec, May 02 2020: (Start)
Product_{k>=1} (1 + 1/a(k)^2) = A334482.
Product_{k>=1} (1 - 1/a(k)^3) = A334480.
Product_{k>=1} (1 + 1/a(k)^3) = A334479. (End)
Legendre symbol (-3, a(n)) = -1 and (-3, A002476(n)) = +1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - Wolfdieter Lang, Mar 03 2021
A068228 Primes congruent to 1 (mod 12).
13, 37, 61, 73, 97, 109, 157, 181, 193, 229, 241, 277, 313, 337, 349, 373, 397, 409, 421, 433, 457, 541, 577, 601, 613, 661, 673, 709, 733, 757, 769, 829, 853, 877, 937, 997, 1009, 1021, 1033, 1069, 1093, 1117, 1129, 1153, 1201, 1213, 1237, 1249, 1297
Offset: 1
Comments
This has several equivalent definitions (cf. the Tunnell link)
Also primes of the form x^2 + 9y^2 (discriminant -36). - T. D. Noe, May 07 2005 [corrected by Klaus Purath, Jan 18 2023]
Also primes of the form x^2 - 12y^2 (discriminant 48). Cf. A140633. - T. D. Noe, May 19 2008 [corrected by Klaus Purath, Jan 18 2023]
Also primes of the form x^2 + 4*x*y + y^2.
Also primes of the form x^2 + 2*x*y - 2*y^2 (cf. A084916).
Also primes of the form x^2 + 6*x*y - 3*y^2.
Also primes of the form 4*x^2 + 8*x*y + y^2.
Also primes of the form u^2 - 3v^2 (use the transformation {u,v} = {x+2y,y}). - Tito Piezas III, Dec 28 2008
Sequence lists generalized cuban primes (A007645) that are the sum of 2 nonzero squares. - Altug Alkan, Nov 25 2015
Yasutoshi Kohmoto observes that prevprime(a(n)) is more frequently congruent to 3 (mod 4) than to 1. This bias can be explained by the possible prime constellations and gaps: To have the same residue mod 4 as a prime in the list, the previous prime must be at a gap of 4 or 8 or 12 ..., but a gap of 4 is impossible because 12k + 1 - 4 is divisible by 3, and gaps >= 12 are very rare for small primes. To have the residue 3 (mod 4) the previous prime can be at a gap of 2 or 6 with no a priori divisibility property. However, this bias tends to disappear as the primes (and average prime gaps) grow bigger: for primes < 10^5, the ratio is about 35% vs. 65% as the above simple explanation suggests, but considering primes up to 10^8 yields a ratio of about 41% vs. 59%. It can be expected that the ratio asymptotically tends to 1:1. - M. F. Hasler, Sep 01 2017
Also primes of the form x^2 - 27*y^2. - Klaus Purath, Jan 18 2023
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
- David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- William C. Jagy and Irving Kaplansky, Positive definite binary quadratic forms that represent the same primes [Cached copy, with permission]
- Michael Penn, an example right from my number theory class., YouTube video, 2021.
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- J. B. Tunnell, Proofs of Conjectures Concerning Entry A033212, the Sequence of Primes Congruent to 1 or 19 (mod 30)
- J. Voight, Quadratic forms that represent almost the same primes, Math. Comp., Vol. 76 (2007), pp. 1589-1617.
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Crossrefs
Cf. A068227, A068229, A040117, A068231, A068232, A068233, A068234, A068235, A139643, A141122, A140633, A264732.
Subsequence of A084916.
Subsequence of A007645.
Cf. A141123 (d=12), A141111, A141112 (d=65), A141187 (d=48) A038872 (d=5), A038873 (d=8), A038883 (d=13), A038889 (d=17).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Programs
-
Magma
[p: p in PrimesUpTo(1400) | p mod 12 in {1}]; // Vincenzo Librandi, Jul 14 2012 For other programs see the "Binary Quadratic Forms and OEIS" link.
-
Maple
select(isprime, [seq(i,i=1..10000, 12)]); # Robert Israel, Nov 27 2015
-
Mathematica
Select[Prime/@Range[250], Mod[ #, 12]==1&] Select[Range[13, 10^4, 12], PrimeQ] (* Zak Seidov, Mar 21 2011 *)
-
PARI
for(i=1,250, if(prime(i)%12==1, print(prime(i))))
-
PARI
forstep(p=13,10^4,12,isprime(p)&print(p)); \\ Zak Seidov, Mar 21 2011
Extensions
Edited by Dean Hickerson, Feb 27 2002
Entry revised by N. J. A. Sloane, Oct 18 2014 (Edited, merged with A141122, submitted by Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 05 2008).
A068231 Primes congruent to 11 mod 12.
11, 23, 47, 59, 71, 83, 107, 131, 167, 179, 191, 227, 239, 251, 263, 311, 347, 359, 383, 419, 431, 443, 467, 479, 491, 503, 563, 587, 599, 647, 659, 683, 719, 743, 827, 839, 863, 887, 911, 947, 971, 983, 1019, 1031, 1091, 1103, 1151, 1163, 1187, 1223
Offset: 1
Comments
Intersection of A002145 (primes of form 4n+3) and A003627 (primes of form 3n-1). So these are both Gaussian primes with no imaginary part and Eisenstein primes with no imaginary part. - Alonso del Arte, Mar 29 2007
Is this the same sequence as A141187 (apart from the initial 3)?
If p is prime of the form 2*a(n)^k + 1, then p divides a cyclotomic number Phi(a(n)^k, 2). - Arkadiusz Wesolowski, Jun 14 2013
Also a(n) = primes p dividing A014138((p-3)/2), where A014138(n) = Partial sums of (Catalan numbers starting 1,2,5,...), cf. A000108. - Alexander Adamchuk, Dec 27 2013
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
MATLAB
%4n-1 and 6n-1 primes n = 1:10000; n2 = 4*n-1; n3 = 3*n-1; p = primes(max(n2)); Res = intersect(n2,n3); Res2 = intersect(Res,p); % Jesse H. Crotts, Sep 25 2016
-
Magma
[p: p in PrimesUpTo(1500) | p mod 12 eq 11 ]; // Vincenzo Librandi, Aug 14 2012
-
Mathematica
Select[Prime/@Range[250], Mod[ #, 12]==11&] Select[Range[11,1500,12],PrimeQ] (* Harvey P. Dale, Sep 15 2023 *)
-
PARI
for(i=1,250, if(prime(i)%12==11, print(prime(i))))
Extensions
Edited by Dean Hickerson, Feb 27 2002
A040117 Primes congruent to 5 (mod 12). Also primes p such that x^4 = 9 has no solution mod p.
5, 17, 29, 41, 53, 89, 101, 113, 137, 149, 173, 197, 233, 257, 269, 281, 293, 317, 353, 389, 401, 449, 461, 509, 521, 557, 569, 593, 617, 641, 653, 677, 701, 761, 773, 797, 809, 821, 857, 881, 929, 941, 953, 977, 1013, 1049, 1061, 1097, 1109, 1181, 1193
Offset: 1
Comments
Odd primes of the form 2x^2-2xy+5y^2 with x and y nonnegative. - T. D. Noe, May 08 2005, corrected by M. F. Hasler, Jul 03 2025
Odd primes of the form a^2 + b^2 such that a^2 == b^2 (mod 3). - Thomas Ordowski and Charles R Greathouse IV, May 20 2015
Yasutoshi Kohmoto observes that nextprime(a(n)) is more frequently congruent to 3 (mod 4) than to 1. This bias can be explained by the possible prime constellations and gaps: To have the same residue mod 4 as a prime in the list, the next prime must be at a gap of 4 or 8 or 12..., but a gap of 4 is impossible because 12k + 5 + 4 is divisible by 3, and gaps >= 12 are very rare for small primes. To have the residue 3 (mod 4) the next prime can be at a gap of 2 or 6 with no a priori divisibility property. However, this bias tends to disappear as the primes (and average prime gaps) grow bigger: for primes < 10^5, the ratio is about 35% vs 65% (as the above simple explanation suggests), but considering primes up to 10^8 yields a ratio of about 40% vs 60%. It can be expected that the ratio asymptotically tends to 1:1. - M. F. Hasler, Sep 01 2017
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
[p: p in PrimesUpTo(1200) | not exists{x : x in ResidueClassRing(p) | x^4 eq 9} ]; // Vincenzo Librandi, Sep 17 2012
-
Mathematica
Select[Prime/@Range[250], Mod[ #, 12]==5&] ok[p_]:= Reduce[Mod[x^4 - 9, p] == 0, x, Integers] == False;Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 17 2012 *)
-
PARI
for(i=1,250, if(prime(i)%12==5, print(prime(i))))
Formula
a(n) ~ 4n log n. - Charles R Greathouse IV, May 20 2015
Extensions
More terms from Dean Hickerson, Feb 27 2002
A132231 Primes congruent to 7 (mod 30).
7, 37, 67, 97, 127, 157, 277, 307, 337, 367, 397, 457, 487, 547, 577, 607, 727, 757, 787, 877, 907, 937, 967, 997, 1087, 1117, 1237, 1297, 1327, 1447, 1567, 1597, 1627, 1657, 1747, 1777, 1867, 1987, 2017, 2137, 2287, 2347, 2377, 2437, 2467, 2557, 2617, 2647
Offset: 1
Comments
Primes ending in 7 with (SOD-1)/3 integer where SOD is sum of digits. - Ki Punches, Feb 07 2009
Only from 4927 on, there are more composite numbers than primes in {7+30k}, see A227869. - M. F. Hasler, Nov 02 2013
Terms are non-twin primes A007510, except for 7. - Jonathan Sondow, Oct 27 2017
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- C. K. Caldwell, The Prime Pages
- Omar E. Pol, Prime numbers in a sieve with 30 columns
- Omar E. Pol, Sobre el patrón de los números primos
Crossrefs
Programs
-
Haskell
a132231 n = a132231_list !! (n-1) a132231_list = [x | k <- [0..], let x = 30 * k + 7, a010051' x == 1] -- Reinhard Zumkeller, Jul 13 2012
-
Magma
[p: p in PrimesUpTo(3000) | p mod 30 eq 7 ]; // Vincenzo Librandi, Aug 14 2012
-
Mathematica
Select[30*Range[0,100]+7,PrimeQ] (* Harvey P. Dale, Feb 01 2012 *) Select[Prime[Range[1000]],MemberQ[{7},Mod[#,30]]&] (* Vincenzo Librandi, Aug 14 2012 *)
-
PARI
forstep(p=7,1999,30,isprime(p)&&print1(p",")) \\ M. F. Hasler, Nov 02 2013
Formula
a(n) = A158573(n)*30 + 7. - Ray Chandler, Apr 07 2009
a(n) = A211890(4,n-1) for n <= 5. - Reinhard Zumkeller, Jul 13 2012
Extensions
Extended by Ray Chandler, Apr 07 2009
A017605 a(n) = 12*n + 7.
7, 19, 31, 43, 55, 67, 79, 91, 103, 115, 127, 139, 151, 163, 175, 187, 199, 211, 223, 235, 247, 259, 271, 283, 295, 307, 319, 331, 343, 355, 367, 379, 391, 403, 415, 427, 439, 451, 463, 475, 487, 499, 511, 523, 535, 547, 559, 571, 583, 595, 607, 619, 631
Offset: 0
Links
- Tanya Khovanova, Recursive Sequences
- Leo Tavares, Illustration: Hexagonal Wheels
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Mathematica
12*Range[0,200] + 7 (* Vladimir Joseph Stephan Orlovsky, Feb 19 2011 *)
-
PARI
a(n)=12*n+7 \\ Charles R Greathouse IV, Jul 10 2016
-
Sage
[i+7 for i in range(525) if gcd(i,12) == 12] # Zerinvary Lajos, May 21 2009
Formula
a(n) = 2*(12*n+1) - a(n-1) = 2*a(n-1) - a(n-2) with a(0) = 7, a(1) = 19. - Vincenzo Librandi, Nov 19 2010
From Elmo R. Oliveira, Apr 02 2024: (Start)
G.f.: (7+5*x)/(1-x)^2.
E.g.f.: exp(x)*(7 + 12*x).
A141849 Primes congruent to 1 mod 11.
23, 67, 89, 199, 331, 353, 397, 419, 463, 617, 661, 683, 727, 859, 881, 947, 991, 1013, 1123, 1277, 1321, 1409, 1453, 1607, 1783, 1871, 2003, 2069, 2113, 2179, 2267, 2311, 2333, 2377, 2399, 2531, 2663, 2707, 2729, 2861, 2927, 2971, 3037, 3169, 3191, 3257
Offset: 1
Comments
Conjecture: Also primes p such that ((x+1)^11-1)/x has 10 distinct irreducible factors of degree 1 over GF(p). - Federico Provvedi, Apr 17 2018
Primes congruent to 1 mod 22. - Chai Wah Wu, Apr 28 2025
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), A007528 (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), this sequence (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).
Programs
-
GAP
Filtered([1..4000],n->n mod 11=1 and IsPrime(n)); # Muniru A Asiru, Apr 19 2018
-
Magma
[ p: p in PrimesUpTo(5000) | p mod 11 eq 1 ]; // Vincenzo Librandi, Apr 19 2011
-
Maple
a:=select(n->isprime(n) and modp(n,11)=1,[$1..4000]); # Muniru A Asiru, Apr 19 2018
-
Mathematica
Select[Range[1,10000,11],PrimeQ] (* Vladimir Joseph Stephan Orlovsky, May 18 2011 *)
-
PARI
is(n)=isprime(n) && n%11==1 \\ Charles R Greathouse IV, Jul 01 2016
-
PARI
forstep(n=2, 1e3, 2, if(isprime(p=11*n+1), print1(p, ", "))); \\ Altug Alkan, Apr 19 2018
Formula
a(n) ~ 10n log n. - Charles R Greathouse IV, Jul 02 2016
A068227 The "genity" sequence of the primes, i.e., a(n) = g(p) = ((p mod 4) + (p mod 6))/2, where p is the n-th prime.
2, 3, 3, 2, 4, 1, 3, 2, 4, 3, 2, 1, 3, 2, 4, 3, 4, 1, 2, 4, 1, 2, 4, 3, 1, 3, 2, 4, 1, 3, 2, 4, 3, 2, 3, 2, 1, 2, 4, 3, 4, 1, 4, 1, 3, 2, 2, 2, 4, 1, 3, 4, 1, 4, 3, 4, 3, 2, 1, 3, 2, 3, 2, 4, 1, 3, 2, 1, 4, 1, 3, 4, 2, 1, 2, 4, 3, 1, 3, 1, 4, 1, 4, 1, 2, 4, 3, 1, 3, 2, 4, 4, 2, 4, 2, 4, 3, 3, 2, 1, 2, 3, 4
Offset: 1
Comments
The name "genity" was derived from "genes" and "parity", since the fourfold values of g(p) in a sequence corresponding to prime arguments resemble the genetic sequences of the nucleotides in the DNA. Parity is also related, since it originally means a (mod 2) feature, while here we categorize the primes (mod 4) and (mod 6), simultaneously.
The arithmetic function g(p) = ((p mod 4) + (p mod 6))/2 provides integer values for prime arguments, such that 1 <= g(p) <= 4 and is determined by the congruence class of p (mod 12). Specifically, g(p)=1 if p==1 (mod 12), g(p)=2 if p=2 or p==7 (mod 12), g(p)=3 if p=3 or p==5 (mod 12) and g(p)=4 if p==11 (mod 12).
Dickson's conjecture implies that every finite sequence of numbers from 1 to 4 occurs infinitely often in this sequence.
Links
- Robert Price, Table of n, a(n) for n = 1..10000
- The Prime Glossary, Dickson's conjecture
Programs
-
Mathematica
Table[(Mod[Prime[n], 4] + Mod[Prime[n], 6])/2, {n, 1, 100}]
-
PARI
for(i=1,120,print((prime(i)%4+prime(i)%6)/2))
Extensions
Edited by Dean Hickerson and Robert G. Wilson v, Mar 06 2002
A385223 Primes p such that multiplicative order of -3 modulo p is odd.
2, 7, 19, 31, 37, 43, 61, 67, 79, 103, 127, 139, 151, 157, 163, 199, 211, 223, 271, 283, 307, 331, 349, 367, 373, 379, 397, 439, 463, 487, 499, 523, 547, 571, 607, 613, 619, 631, 643, 661, 691, 727, 739, 751, 787, 811, 823, 853, 859, 877, 883, 907, 919, 937, 967, 991, 997
Offset: 1
Comments
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Select[Prime[Range[200]], OddQ[MultiplicativeOrder[-3, #]] &] (* Paolo Xausa, Jun 28 2025 *)
-
PARI
isA385223(p) = isprime(p) && (p!=3) && znorder(Mod(-3,p))%2
Comments
References
Links
Crossrefs
Programs
Mathematica
PARI
Extensions