cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A016921 a(n) = 6*n + 1.

Original entry on oeis.org

1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, 163, 169, 175, 181, 187, 193, 199, 205, 211, 217, 223, 229, 235, 241, 247, 253, 259, 265, 271, 277, 283, 289, 295, 301, 307, 313, 319, 325, 331
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 22 ).
Also solutions to 2^x + 3^x == 5 (mod 7). - Cino Hilliard, May 10 2003
Except for 1, exponents n > 1 such that x^n - x^2 - 1 is reducible. - N. J. A. Sloane, Jul 19 2005
Let M(n) be the n X n matrix m(i,j) = min(i,j); then the trace of M(n)^(-2) is a(n-1) = 6*n - 5. - Benoit Cloitre, Feb 09 2006
If Y is a 3-subset of an (2n+1)-set X then, for n >= 3, a(n-1) is the number of 3-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 16 2007
All composite terms belong to A269345 as shown in there. - Waldemar Puszkarz, Apr 13 2016
First differences of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 773", based on the 5-celled von Neumann neighborhood. - Robert Price, May 23 2016
For b(n) = A103221(n) one has b(a(n)-1) = b(a(n)+1) = b(a(n)+2) = b(a(n)+3) = b(a(n)+4) = n+1 but b(a(n)) = n. So-called "dips" in A103221. See the Avner and Gross remark on p. 178. - Wolfdieter Lang, Sep 16 2016
A (n+1,n) pebbling move involves removing n + 1 pebbles from a vertex in a simple graph and placing n pebbles on an adjacent vertex. A two-player impartial (n+1,n) pebbling game involves two players alternating (n+1,n) pebbling moves. The first player unable to make a move loses. The sequence a(n) is also the minimum number of pebbles such that any assignment of those pebbles on a complete graph with 3 vertices is a next-player winning game in the two player impartial (k+1,k) pebbling game. These games are represented by A347637(3,n). - Joe Miller, Oct 18 2021
Interleaving of A017533 and A017605. - Leo Tavares, Nov 16 2021

Examples

			From _Ilya Gutkovskiy_, Apr 15 2016: (Start)
Illustration of initial terms:
                      o
                    o o o
              o     o o o
            o o o   o o o
      o     o o o   o o o
    o o o   o o o   o o o
o   o o o   o o o   o o o
n=0  n=1     n=2     n=3
(End)
		

References

  • Avner Ash and Robert Gross, Summing it up, Princeton University Press, 2016, p. 178.

Crossrefs

Cf. A093563 ((6, 1) Pascal, column m=1).
a(n) = A007310(2*(n+1)); complement of A016969 with respect to A007310.
Cf. A287326 (second column).

Programs

Formula

a(n) = 6*n + 1, n >= 0 (see the name).
G.f.: (1+5*x)/(1-x)^2.
A008615(a(n)) = n. - Reinhard Zumkeller, Feb 27 2008
A157176(a(n)) = A013730(n). - Reinhard Zumkeller, Feb 24 2009
a(n) = 4*(3*n-1) - a(n-1) (with a(0)=1). - Vincenzo Librandi, Nov 20 2010
E.g.f.: (1 + 6*x)*exp(x). - G. C. Greubel, Sep 18 2019
a(n) = A003215(n) - 6*A000217(n-1). See Hexagonal Lines illustration. - Leo Tavares, Sep 10 2021
From Leo Tavares, Oct 27 2021: (Start)
a(n) = 6*A001477(n-1) + 7
a(n) = A016813(n) + 2*A001477(n)
a(n) = A017605(n-1) + A008588(n-1)
a(n) = A016933(n) - 1
a(n) = A008588(n) + 1. (End)
Sum_{n>=0} (-1)^n/a(n) = Pi/6 + sqrt(3)*arccoth(sqrt(3))/3. - Amiram Eldar, Dec 10 2021

A165460 The height at the 1/3 point of Jacobi-bridge, computed for 12n+7. a(n) = Sum_{i=0..(4n+2)} J(i,12n+7), where J(i,m) is the Jacobi symbol.

Original entry on oeis.org

2, 2, 6, 2, 8, 2, 10, 4, 10, 4, 10, 6, 14, 2, 4, 4, 18, 6, 14, 4, 12, 8, 22, 6, 16, 6, 20, 6, 2, 8, 18, 6, 28, 4, 20, 4, 30, 12, 14, 0, 14, 6, 28, 10, 28, 6, 32, 10, 16, 8, 26, 10, 26, 6, 24, 8, 36, 10, 28, 8, 26, 10, 30, 8, 0, 10, 32, 14, 18, 12, 0, 14, 44, 6, 32, 6, 38, 0, 32, 8, 22
Offset: 0

Views

Author

Antti Karttunen, Oct 06 2009

Keywords

Comments

Conjecture: a(2n) = 2*A165605(2n) and a(2n+1) = (2/3)*A165605(2n+1). - Antti Karttunen, Oct 05 2009. (If true, then implies also the truth of conjecture in A165462.)

Crossrefs

Programs

  • Mathematica
    Table[Sum[JacobiSymbol[i, 12n + 7], {i, 0, 4n + 2}], {n, 0, 100}] (* Indranil Ghosh, May 13 2017 *)
  • PARI
    a(n) = sum(i=0, 4*n + 2, kronecker(i, 12*n + 7)); \\ Indranil Ghosh, May 13 2017
    
  • Python
    from sympy import jacobi_symbol as J
    def a(n): return sum([J(i, 12*n + 7) for i in range(4*n + 3)]) # Indranil Ghosh, May 13 2017

A369461 Number of representations of 12n-5 as a sum (p*q + p*r + q*r) with three odd primes p <= q <= r.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 1, 1, 1, 0, 0, 2, 0, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 3, 0, 0, 0, 2, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 3, 0, 0, 1, 1, 2, 0, 0, 2, 1, 1, 0, 1, 0, 0, 1, 2, 0, 0, 1, 3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 1, 2, 1, 0, 1, 1, 0, 0, 0, 4, 0, 1, 1, 0, 0, 0, 1, 2, 0, 1, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Jan 23 2024

Keywords

Comments

The sequence seems to contain an infinite number of zeros. See A369451 for the cumulative sum, and comments there.
Question: Are there any sections of this sequence, with parameters k >= 2, 0 <= i < k, for which a((k*n)-i) = 0 for all n >= 1? - Antti Karttunen, Nov 20 2024

Crossrefs

Trisection of A369055.
Cf. A017605, A369054, A369451 (partial sums), A369460, A369462.

Programs

  • PARI
    A369054(n) = if(3!=(n%4),0, my(v = [3,3], ip = #v, r, c=0); while(1, r = (n-(v[1]*v[2])) / (v[1]+v[2]); if(r < v[2], ip--, ip = #v; if(1==denominator(r) && isprime(r),c++)); if(!ip, return(c)); v[ip] = nextprime(1+v[ip]); for(i=1+ip,#v,v[i]=v[i-1])));
    A369461(n) = A369054((12*n)-5);

Formula

a(n) = A369054(A017605(n-1)) = A369054((12*n)-5).
a(n) = A369055((3*n)-1).

A056530 Sequence remaining after third round of Flavius Josephus sieve; remove every fourth term of A047241.

Original entry on oeis.org

1, 3, 7, 13, 15, 19, 25, 27, 31, 37, 39, 43, 49, 51, 55, 61, 63, 67, 73, 75, 79, 85, 87, 91, 97, 99, 103, 109, 111, 115, 121, 123, 127, 133, 135, 139, 145, 147, 151, 157, 159, 163, 169, 171, 175, 181, 183, 187, 193, 195, 199, 205, 207, 211, 217, 219, 223, 229, 231
Offset: 1

Views

Author

Henry Bottomley, Jun 19 2000

Keywords

Comments

Numbers {1, 3, 7} mod 12: A017533, A017557, A017605 interleaved.

Crossrefs

We have A000027 after 0 rounds of sieving, A005408 after 1 round of sieving, A047241 after 2 rounds, A056530 after 3 rounds, A056531 after 4 rounds, A000960 after all rounds. After n rounds the remaining sequence comprises A002944(n) numbers mod A003418(n+1), i.e. 1/(n+1) of them.

Programs

  • Mathematica
    LinearRecurrence[{1,0,1,-1},{1,3,7,13},60] (* Harvey P. Dale, Oct 19 2022 *)

Formula

From Chai Wah Wu, Jul 24 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 4.
G.f.: x*(5*x^3 + 4*x^2 + 2*x + 1)/(x^4 - x^3 - x + 1). (End)
a(n) = 4*n - (13 + 2*A131713(n))/3. - R. J. Mathar, Jun 22 2020

A051895 Partial sums of second pentagonal numbers with even index (A049453).

Original entry on oeis.org

0, 7, 33, 90, 190, 345, 567, 868, 1260, 1755, 2365, 3102, 3978, 5005, 6195, 7560, 9112, 10863, 12825, 15010, 17430, 20097, 23023, 26220, 29700, 33475, 37557, 41958, 46690, 51765, 57195, 62992, 69168, 75735, 82705, 90090, 97902, 106153, 114855, 124020, 133660
Offset: 0

Views

Author

Barry E. Williams, Dec 17 1999

Keywords

Comments

For A049453(n+1), the corresponding formula would be a(n)=(n+1)*(6*n+7) and its partial sums would be given by a(n)=(n+1)*(n+2)*(4*n+7)/2.

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Programs

  • Magma
    I:=[0, 7, 33, 90]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Apr 27 2012
    
  • Mathematica
    Table[(n(4n-1)(n-1))/2,{n,40}]  (* Harvey P. Dale, Mar 11 2011 *)
    CoefficientList[Series[x*(7+5*x)/(1-x)^4,{x,0,50}],x] (* Vincenzo Librandi, Apr 27 2012 *)
  • PARI
    a(n) = n*(n+1)*(4*n+3)/2; \\ Altug Alkan, Apr 20 2018

Formula

a(n) = n*(n+1)*(4*n+3)/2.
G.f.: x*(7+5*x)/(1-x)^4. - Colin Barker, Jan 12 2012
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Vincenzo Librandi, Apr 27 2012
a(n) = A002492(n) + A016061(n). - J. M. Bergot, Apr 20 2018

A142241 a(n) = 24*n + 14.

Original entry on oeis.org

14, 38, 62, 86, 110, 134, 158, 182, 206, 230, 254, 278, 302, 326, 350, 374, 398, 422, 446, 470, 494, 518, 542, 566, 590, 614, 638, 662, 686, 710, 734, 758, 782, 806, 830, 854, 878, 902, 926, 950, 974, 998, 1022, 1046, 1070, 1094, 1118, 1142, 1166, 1190, 1214, 1238
Offset: 0

Views

Author

Paul Curtz, Sep 17 2008

Keywords

Crossrefs

Cf. A017605.

Programs

Formula

From R. J. Mathar and Omar E. Pol, Sep 19 2008: (Start)
a(n) = 2*A017605(n).
G.f.: 2*(7+5*x)/(1-x)^2. (End)
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: 2*exp(x)*(7 + 12*x).
a(n) = 2*a(n-1) - a(n-2). (End)

Extensions

Edited by N. J. A. Sloane, Sep 19 2008

A166050 a(n) = Sum_{i=0..(2n+1)} J(i,12n+7), where J(i,k) is the Jacobi symbol.

Original entry on oeis.org

1, -1, 3, -1, 4, -1, 5, -2, 5, -2, 5, -3, 7, -1, 2, -2, 9, -3, 7, -2, 6, -4, 11, -3, 8, -3, 10, -3, 1, -4, 9, -3, 14, -2, 10, -2, 15, -6, 7, 0, 7, -3, 14, -5, 14, -3, 16, -5, 8, -4, 13, -5, 13, -3, 12, -4, 18, -5, 14, -4, 13, -5, 15, -4, 0, -5, 16, -7, 9, -6, 0, -7, 22, -3, 16, -3
Offset: 0

Views

Author

Antti Karttunen, Oct 13 2009. Erroneous name corrected Oct 20 2009

Keywords

Comments

The height at the 1/6 point of "Jacobi-bridge/path", computed for each odd integer of the form 12n+7.

Crossrefs

Bisections: A166268, A166269 (see conjectures there). Cf. A017605. Scheme-code for jacobi-symbol is given at A165601.

A378704 Array read by ascending antidiagonals: A(n, k) is the total area of n-Fibonacci polyominoes with k columns, where k > 0.

Original entry on oeis.org

2, 3, 7, 4, 11, 16, 5, 15, 31, 35, 6, 19, 43, 73, 70, 7, 23, 55, 111, 168, 136, 8, 27, 67, 143, 261, 370, 256, 9, 31, 79, 175, 351, 602, 790, 473, 10, 35, 91, 207, 431, 816, 1350, 1658, 860, 11, 39, 103, 239, 511, 1023, 1865, 2966, 3425, 1545, 12, 43, 115, 271, 591, 1215, 2346, 4178, 6414, 6989, 2748
Offset: 2

Views

Author

Stefano Spezia, Dec 04 2024

Keywords

Examples

			The array begins as:
  2,  7, 16,  35,  70,  136,  256, ...
  3, 11, 31,  73, 168,  370,  790, ...
  4, 15, 43, 111, 261,  602, 1350, ...
  5, 19, 55, 143, 351,  816, 1865, ...
  6, 23, 67, 175, 431, 1023, 2346, ...
  7, 27, 79, 207, 511, 1215, 2815, ...
  ...
		

Crossrefs

Programs

  • Mathematica
    A[n_,k_]:=SeriesCoefficient[y(n^2(1-y)^2y^n+2y(1-y^n)-n(1-y)(2-y^n+y^(n+1)))/(2(-1+y)(1-2y+y^(n+1))^2),{y,0,k}]; Table[A[n-k+1,k],{n,2,12},{k,n-1}]//Flatten

Formula

A(n, k) = [y^k] y*(n^2*(1 - y)^2*y^n + 2*y*(1 - y^n) - n(1 - y)*(2- y^n + y^(n+1)))/(2*(-1 + y)*(1 - 2*y + y^(n+1))^2).
A(n, n-1) = A356888(n) - 1.

A272975 Numbers that are congruent to {0,7} mod 12.

Original entry on oeis.org

0, 7, 12, 19, 24, 31, 36, 43, 48, 55, 60, 67, 72, 79, 84, 91, 96, 103, 108, 115, 120, 127, 132, 139, 144, 151, 156, 163, 168, 175, 180, 187, 192, 199, 204, 211, 216, 223, 228, 235, 240, 247, 252, 259, 264, 271, 276, 283, 288, 295, 300, 307, 312, 319, 324
Offset: 1

Views

Author

Wesley Ivan Hurt, May 30 2016

Keywords

Comments

Numbers that are not congruent to {1, 2, 3, 4, 5, 6, 8, 9, 10, 11} mod 12.
Bisection of A083032.

Crossrefs

Programs

  • Magma
    [n : n in [0..400] | n mod 12 in [0, 7]];
    
  • Maple
    A272975:=n->(12*n-11+(-1)^n)/2: seq(A272975(n), n=1..100);
  • Mathematica
    Table[(12n - 11 + (-1)^n)/2, {n, 80}]
  • PARI
    concat(0, Vec(x^2*(7+5*x)/((x-1)^2*(x+1)) + O(x^99))) \\ Altug Alkan, May 31 2016

Formula

G.f.: x^2*(7+5*x) / ((x-1)^2*(x+1)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3.
a(n) = (12*n - 11 + (-1)^n)/2.
a(2k) = A017605(k-1) k>0, a(2k-1) = A008594(k-1) k>0, a(2k)-a(2k-1) = 7.
a(n)-a(-n) = A008594(n) for n>0.
Sum_{i=1..n} a(2*i) = A049453(n) for n>0.
Sum_{i=1..n} a(2*i-1) = A049598(n-1) for n>0.
E.g.f.: 5 + ((12*x - 11)*exp(x) + exp(-x))/2. - David Lovler, Sep 04 2022
Sum_{n>=2} (-1)^n/a(n) = log(2)/4 + log(3)/8 - ((sqrt(3)-1)*Pi + 2*(sqrt(3)+3)*log(sqrt(3)+2))/(24*(sqrt(3)+1)). - Amiram Eldar, Sep 17 2023

A110599 Balanced numbers n such that n mod 12 = 7.

Original entry on oeis.org

24871, 58435, 140335, 1529983, 2086903, 3722875, 3830827, 8697535, 13932919, 16408315, 21578755, 27882595, 76319155, 126245119, 183531439, 192871987, 198394675, 207619555, 229523371, 337800463, 361504507, 416690995, 440127655, 535044055, 693298315, 729802255
Offset: 1

Views

Author

Walter Kehowski, Sep 13 2005

Keywords

Comments

For the first 26 terms, the quotient (sigma(n)/phi(n)) is 2 or 3.

Crossrefs

Intersection of A017605 and A020492.

Programs

  • Maple
    with(numtheory); BNM7:=[]: for z from 1 to 1 do for m from 1 to 1000000 do n:=12*m+7; if sigma(n) mod phi(n) = 0 then BNM7:=[op(BNM7),n] fi; od; od; BNM7;
  • Mathematica
    Select[Range[10^7], Mod[#, 12] == 7 && Divisible[DivisorSigma[1, #], EulerPhi[#]] &] (* Amiram Eldar, Dec 04 2019 *)

Extensions

Duplicate terms removed and a(8)-a(26) from Donovan Johnson, Aug 30 2012
Showing 1-10 of 12 results. Next