cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068403 Numbers k such that sigma(k) > 3*k.

Original entry on oeis.org

180, 240, 360, 420, 480, 504, 540, 600, 660, 720, 780, 840, 900, 960, 1008, 1080, 1200, 1260, 1320, 1344, 1440, 1512, 1560, 1584, 1620, 1680, 1800, 1848, 1872, 1890, 1920, 1980, 2016, 2040, 2100, 2160, 2184, 2280, 2340, 2352, 2376, 2400, 2520, 2640
Offset: 1

Views

Author

Benoit Cloitre, Mar 02 2002

Keywords

Comments

Davenport shows that these numbers have positive density. Are there good bounds for the density?
G. Miller & M. Whalen suggested that 1018976683725 (3^3*5^2*7^2*11*13*17*19*23*29) might be the smallest odd number in the sequence (a fact now, see A119240 and A023197). - Michel Marcus, May 01 2013
From Amiram Eldar, Feb 13 2021: (Start)
Behrend (1933) found the bounds (0.009, 0.110) for the asymptotic density.
Wall et al. (1972) found the bounds (0.0186, 0.0461).
The upper bound was reduced to 0.0214614 using Deléglise's method by McDaniel College (2010). (End)
Note that 1018976683725, the smallest odd term in this sequence, is A053624(51). - Charles R Greathouse IV, Jan 09 2025

References

  • Harold Davenport, Über numeri abundantes, Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl., No. 6 (1933), pp. 830-837.

Crossrefs

Terms not divisible by 6 are in A126104.
Cf. A005820 (3-perfect numbers).

Programs

  • Maple
    A068403:=n->`if`((numtheory)[sigma](n) > 3*n, n, NULL): seq(A068403(n), n=1..5*10^3); # Wesley Ivan Hurt, Apr 09 2017
  • Mathematica
    Select[Range[180, 2000], 3*# < Plus@@Divisors[ # ]&] (* Vladimir Joseph Stephan Orlovsky, Apr 21 2010 *)
    Select[Range[3000],DivisorSigma[1,#]>3#&] (* Harvey P. Dale, Aug 12 2023 *)
  • PARI
    for(n=1, 3000, if(sigma(n)>3*n, print1(n,", "))) \\ Indranil Ghosh, Apr 10 2017
    
  • Python
    from sympy import divisor_sigma
    print([n for n in range(180, 3001) if divisor_sigma(n)>3*n]) # Indranil Ghosh, Apr 10 2017

Formula

A001221(a(n)) >= 3 (Laatsch, 1986). - Amiram Eldar, Nov 07 2020
a(n) ~ k*n for some constant k with 46 < k < 54. - Charles R Greathouse IV, Jan 21 2025