A068403 Numbers k such that sigma(k) > 3*k.
180, 240, 360, 420, 480, 504, 540, 600, 660, 720, 780, 840, 900, 960, 1008, 1080, 1200, 1260, 1320, 1344, 1440, 1512, 1560, 1584, 1620, 1680, 1800, 1848, 1872, 1890, 1920, 1980, 2016, 2040, 2100, 2160, 2184, 2280, 2340, 2352, 2376, 2400, 2520, 2640
Offset: 1
References
- Harold Davenport, Über numeri abundantes, Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl., No. 6 (1933), pp. 830-837.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- Felix Behrend, Über numeri abundantes II, Preuss. Akad. Wiss. Sitzungsber., Vol. 6 (1933), pp. 280-293; alternative link.
- Marc Deléglise, Bounds for the Density of Abundant Integers, Experimental Mathematics, Vol. 7, No. 2 (1998), pp. 137-143.
- Richard Laatsch, Measuring the Abundancy of Integers, Mathematics Magazine, Vol. 59, No. 2 (1986), pp. 84-92, alternative link.
- Gordon L. Miller and Mary T. Whalen, Multiply Abundant Numbers, School Science and Mathematics, Volume 95, Issue 5 (May 1995), pp. 256-259.
- Summer 2010 research group on Abundancy, Abundancy Bounds 2010, McDaniel College, 2010.
- Charles R. Wall, Phillip L. Crews and Donald B. Johnson, Density Bounds for the Sum of Divisors Function, Mathematics of Computation, Vol. 26, No. 119 (1972), pp. 773-777; Errata, Vol. 31, No. 138 (1977), p. 616.
Crossrefs
Programs
-
Maple
A068403:=n->`if`((numtheory)[sigma](n) > 3*n, n, NULL): seq(A068403(n), n=1..5*10^3); # Wesley Ivan Hurt, Apr 09 2017
-
Mathematica
Select[Range[180, 2000], 3*# < Plus@@Divisors[ # ]&] (* Vladimir Joseph Stephan Orlovsky, Apr 21 2010 *) Select[Range[3000],DivisorSigma[1,#]>3#&] (* Harvey P. Dale, Aug 12 2023 *)
-
PARI
for(n=1, 3000, if(sigma(n)>3*n, print1(n,", "))) \\ Indranil Ghosh, Apr 10 2017
-
Python
from sympy import divisor_sigma print([n for n in range(180, 3001) if divisor_sigma(n)>3*n]) # Indranil Ghosh, Apr 10 2017
Formula
A001221(a(n)) >= 3 (Laatsch, 1986). - Amiram Eldar, Nov 07 2020
a(n) ~ k*n for some constant k with 46 < k < 54. - Charles R Greathouse IV, Jan 21 2025
Comments