A068424 Triangle of falling factorials, read by rows: T(n, k) = n*(n-1)*...*(n-k+1), n > 0, 1 <= k <= n.
1, 2, 2, 3, 6, 6, 4, 12, 24, 24, 5, 20, 60, 120, 120, 6, 30, 120, 360, 720, 720, 7, 42, 210, 840, 2520, 5040, 5040, 8, 56, 336, 1680, 6720, 20160, 40320, 40320, 9, 72, 504, 3024, 15120, 60480, 181440, 362880, 362880, 10, 90, 720, 5040, 30240, 151200, 604800, 1814400, 3628800, 3628800
Offset: 1
Examples
Triangle begins: 1; 2, 2; 3, 6, 6; 4, 12, 24, 24; 5, 20, 60, 120, 120; 6, 30, 120, 360, 720, 720; Square begins: 1, 2, 3, 4, 5, ... 2, 6, 12, 20, 30, ... 6, 24, 60, 120, 210, ... 24, 120, 360, 840, 1680, ... 120, 720, 2520, 6720, 15120, ...
References
- G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Fifth edition, 1979, p. 64.
- O. Rigge, 9th Congr. Math. Scan., Helsingfors, 1938, Mercator, 1939, pp. 155-160.
Links
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
- Mohammad K. Azarian, Remarks and Conjectures Regarding Combinatorics of Discrete Partial Functions, Int'l Math. Forum (2022) Vol. 17, No. 3, 129-141. See Theorem 2.1 (iii), p. 131.
- N. Saradha and T. N. Shorey, Almost Squares and Factorisations in Consecutive Integers, Compositio Mathematica 138 (1) (2003) 113-124.
- Eric Weisstein's World of Mathematics, Falling Factorial.
Crossrefs
Same as A008279 for k>0.
Cf. A094587. - Gary W. Adamson, May 03 2009
Appears in A167546. - Johannes W. Meijer, Nov 12 2009
Programs
-
Mathematica
Flatten[Table[n!/(n-k)!, {n, 10}, {k, n}]] (* or, from version 7: *) Flatten[Table[FactorialPower[n, k], {n, 10}, {k, n}]] (* Jean-François Alcover, Jun 17 2011, updated Sep 29 2016 *)
-
PARI
T(n,k)=if(k<1 || k>n,0,n!/(n-k)!)
Formula
As a triangle: T(n,k) = k!*binomial(n,k) = n!/(n-k)!, 1 <= k <= n. - Michael Somos, Apr 05 2003
E.g.f.: exp(x)*x*y/(1-x*y). - Michael Somos, Apr 05 2003
As a square: A(n,k) = (n+k-1)!/(k-1)!, 1 <= k <= n. - Ron L.J. van den Burg, Nov 28 2021
Comments