cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068466 Decimal expansion of Gamma(1/4).

Original entry on oeis.org

3, 6, 2, 5, 6, 0, 9, 9, 0, 8, 2, 2, 1, 9, 0, 8, 3, 1, 1, 9, 3, 0, 6, 8, 5, 1, 5, 5, 8, 6, 7, 6, 7, 2, 0, 0, 2, 9, 9, 5, 1, 6, 7, 6, 8, 2, 8, 8, 0, 0, 6, 5, 4, 6, 7, 4, 3, 3, 3, 7, 7, 9, 9, 9, 5, 6, 9, 9, 1, 9, 2, 4, 3, 5, 3, 8, 7, 2, 9, 1, 2, 1, 6, 1, 8, 3, 6, 0, 1, 3, 6, 7, 2, 3, 3, 8, 4, 3, 0, 0, 3, 6, 1, 4, 7
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Comments

Nesterenko proves that this constant is transcendental (he cites Chudnovsky as the first to show this); in fact it is algebraically independent of Pi and e^Pi over Q. - Charles R Greathouse IV, Nov 11 2013

Examples

			3.6256099082219083119306851558676720029951676828800654674333...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 33.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 43, equation 43:4:13 at page 414.

Crossrefs

Programs

  • Magma
    R:= RealField(100); SetDefaultRealField(R); Gamma(1/4); // G. C. Greubel, Mar 10 2018
  • Maple
    evalf(GAMMA(1/4));
  • Mathematica
    RealDigits[Gamma[1/4], 10, 110][[1]] (* Bruno Berselli, Dec 13 2012 *)
  • PARI
    default(realprecision, 1080); x=gamma(1/4); for (n=1, 1000, d=floor(x); x=(x-d)*10; write("b068466.txt", n, " ", d)); \\ Harry J. Smith, Apr 19 2009
    

Formula

From Amiram Eldar, Jun 12 2021: (Start)
Equals sqrt(2*sqrt(2*Pi^3)*G), where G is Gauss's constant (A014549).
Equals (2*Pi)^(3/4) * Product_{k>=1} tanh(k*Pi/2) (Duke and Imamoḡlu, 2006). (End)
Gamma(1/4) * A068465 = A063448. - R. J. Mathar, May 22 2024
Equals Product_{n>=1} exp((2*(6*n + 1)*(1 - beta(n)) - (eta(n) - 1))/(4*n)), where eta(n) and beta(n) are the Dirichlet eta and beta functions, respectively. - Antonio Graciá Llorente, Sep 05 2024