A068494 a(n) = n mod phi(n).
0, 0, 1, 0, 1, 0, 1, 0, 3, 2, 1, 0, 1, 2, 7, 0, 1, 0, 1, 4, 9, 2, 1, 0, 5, 2, 9, 4, 1, 6, 1, 0, 13, 2, 11, 0, 1, 2, 15, 8, 1, 6, 1, 4, 21, 2, 1, 0, 7, 10, 19, 4, 1, 0, 15, 8, 21, 2, 1, 12, 1, 2, 27, 0, 17, 6, 1, 4, 25, 22, 1, 0, 1, 2, 35, 4, 17, 6, 1, 16, 27, 2, 1, 12, 21, 2, 31, 8, 1, 18, 19, 4
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- D. H. Bailey and J. M. Borwein, Exploratory Experimentation and Computation, Notices of A. M. S. 58 (2011) 1410-1419, see p. 1416.
Crossrefs
Programs
-
Haskell
a068494 n = mod n $ a000010 n -- Reinhard Zumkeller, Oct 14 2011
-
Magma
[n mod EulerPhi(n): n in [1..100]]; // Vincenzo Librandi, Jul 19 2015
-
Mathematica
Table[Mod[n, EulerPhi[n]], {n, 100}] (* Alonso del Arte, Feb 15 2013 *)
-
PARI
for(n=1,150,print1(n%eulerphi(n),","))
-
PARI
{a(n) = n % eulerphi(n)}; /* Michael Somos, Oct 14 2011 */
Formula
b^(n - a(n)) == 1 (mod n) for every b coprime to n. - Thomas Ordowski, Jun 30 2017
Comments