cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A068553 a(n) = lcm(1,2,...,2*n) / (n*binomial(2*n, n)).

Original entry on oeis.org

1, 1, 1, 3, 2, 5, 15, 7, 28, 126, 30, 165, 198, 143, 1001, 15015, 3640, 884, 7956, 1938, 19380, 203490, 49742, 572033, 980628, 240350, 3124550, 766935, 188370, 2731365, 40970475, 20160075, 4962480, 81880920, 20173560, 353037300
Offset: 1

Views

Author

N. J. A. Sloane, Mar 23 2002

Keywords

Comments

Known to be always an integer.

Crossrefs

Bisection of A048619.
Cf. A068550.

Programs

  • Magma
    [Lcm([1..2*n])/(n*(n+1)*Catalan(n)): n in [1..50]]; // G. C. Greubel, May 04 2023
    
  • Maple
    Num:= 2: Den:=2: Res:= 1:
    for n from 2 to 100 do
      Num:= ilcm(Num,2*n-1,2*n);
      Den:= Den*(4+2/(n-1));
      Res:= Res, Num/Den;
    od:
    Res; # Robert Israel, Dec 26 2018
  • Mathematica
    Table[(LCM@@Range[2n])/(n Binomial[2n,n]),{n,40}] (* Harvey P. Dale, Jul 17 2012 *)
  • SageMath
    def A068553(n) -> int:
        return lcm(range(1,2*n+1))//(n*binomial(2*n,n))
    [A068553(n) for n in range(1,51)] # G. C. Greubel, May 04 2023

Formula

a(n) = A068550(n)/n.
a(n) = A048619(2*n-1).

A268512 Triangle of coefficients c(n,i), 1<=i<=n, such that for each n>=2, c(n,i) are setwise coprime; and for all primes p>2n-1, the sum of (-1)^i*c(n,i)*binomial(i*p,p) is divisible by p^(2n-1).

Original entry on oeis.org

1, 2, 1, 12, 9, 2, 60, 54, 20, 3, 840, 840, 400, 105, 12, 2520, 2700, 1500, 525, 108, 10, 27720, 31185, 19250, 8085, 2268, 385, 30, 360360, 420420, 280280, 133770, 45864, 10780, 1560, 105, 720720, 864864, 611520, 321048, 127008, 36960, 7488, 945, 56, 12252240, 15036840, 11138400, 6297480, 2776032, 942480
Offset: 1

Views

Author

Max Alekseyev, Feb 06 2016

Keywords

Examples

			n=1: 1
n=2: 2, 1
n=3: 12, 9, 2
n=4: 60, 54, 20, 3
n=5: 840, 840, 400, 105, 12
...
For all primes p>3, p^3 divides 2 - binomial(2*p,p) (cf. A087754).
For all primes p>5, p^5 divides 12 - 9*binomial(2*p,p) + 2*binomial(3*p,p) (cf. A268589).
For all primes p>7, p^7 divides 60 - 54*binomial(2*p,p) + 20*binomial(3*p,p) - 3*binomial(4*p,p) (cf. A268590).
		

Crossrefs

Cf. A099996 (first column), A068550 (diagonal), A087754, A268589, A268590, A254593.

Programs

  • Mathematica
    a3418[n_] := LCM @@ Range[n];
    c[1, 1] = 1; c[n_, i_] := a3418[2(n-1)] Binomial[2n-1, n-i] ((2i-1)/i/ Binomial[2n-1, n]);
    Table[c[n, i], {n, 1, 10}, {i, 1, n}] // Flatten (* Jean-François Alcover, Dec 04 2018 *)
  • PARI
    { A268512(n,i) = lcm(vector(2*(n-1),i,i)) * binomial(2*n-1,n-i) * (2*i-1) / i / binomial(2*n-1,n) }

Formula

c(n,i) = A003418(2*(n-1))*binomial(2*n-1,n-i)*(2*i-1)/i/binomial(2*n-1,n).

A048619 a(n) = LCM(binomial(n,0), ..., binomial(n,n)) / binomial(n,floor(n/2)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 3, 4, 2, 10, 5, 30, 15, 7, 7, 56, 28, 252, 126, 60, 30, 330, 165, 396, 198, 286, 143, 2002, 1001, 15015, 15015, 7280, 3640, 1768, 884, 15912, 7956, 3876, 1938, 38760, 19380, 406980, 203490, 99484, 49742, 1144066, 572033, 1961256, 980628
Offset: 0

Views

Author

Keywords

Examples

			If n=10 then A002944(10)=2520, A001405(10)=252, the quotient a(10)=10.
		

Crossrefs

Programs

  • Magma
    [Lcm([1..n+1]) div (Floor((n+3)/2)*Binomial(n+1,Floor((n+3)/2))): n in [0..50]]; // Vincenzo Librandi, Jul 10 2019
  • Mathematica
    Table[Apply[LCM, Binomial[n, Range[0, n]]]/Binomial[n, Floor[n/2]], {n, 0, 48}] (* Michael De Vlieger, Jun 29 2017 *)
  • PARI
    {A048619(n) = lcm(vector(n+1, i, i)) / binomial(n+1, (n+1)\2) / ((n+2)\2);}
    

Formula

a(n) = A002944(n)/A001405(n).
a(n) = lcm(1..n+1)/(floor((n+3)/2)*binomial(n+1,floor((n+3)/2))). - Paul Barry, Jul 03 2006
a(n) = lcm(1,2,...,n+1) / (ceiling((n+1)/2)*binomial(n+1,floor((n+1)/2))) = A003418(n+1) / A100071(n+1). - Max Alekseyev, Oct 23 2015
a(n) = A263673(n+1) / A110654(n+1) = A180000(n+1) / A152271(n). - Max Alekseyev, Oct 23 2015
a(2*n-1) = A068553(n) = A068550(n)/n.

Extensions

Definition corrected and a(0)=1 prepended by Max Alekseyev, Oct 23 2015

A263673 a(n) = lcm{1,2,...,n} / binomial(n,floor(n/2)).

Original entry on oeis.org

1, 1, 1, 2, 2, 6, 3, 12, 12, 20, 10, 60, 30, 210, 105, 56, 56, 504, 252, 2520, 1260, 660, 330, 3960, 1980, 5148, 2574, 4004, 2002, 30030, 15015, 240240, 240240, 123760, 61880, 31824, 15912, 302328, 151164, 77520, 38760, 813960, 406980, 8953560, 4476780, 2288132, 1144066, 27457584, 13728792, 49031400
Offset: 0

Views

Author

Max Alekseyev, Oct 23 2015

Keywords

Comments

From Robert Israel, Oct 23 2015: (Start)
If n = 2^k, a(n) = a(n-1).
If n = p^k where p is an odd prime and k >= 1, 2*n*a(n) = p*(n+1)*a(n-1).
If n is even and not a prime power, 2*a(n) = a(n-1).
If n is odd and not a prime power, 2*n*a(n) = (n+1)*a(n-1). (End)

Crossrefs

Programs

  • Maple
    a := n -> lcm(seq(k,k=1..n))/binomial(n,iquo(n,2)):
    seq(a(n), n=0..49); # Peter Luschny, Oct 23 2015
  • Mathematica
    Join[{1}, Table[LCM @@ Range[n]/Binomial[n, Floor[n/2]], {n, 1, 50}]] (* or *) Table[Product[Cyclotomic[k, 1], {k, 2, n}]/Binomial[n, Floor[n/2]], {n, 0, 50}] (* G. C. Greubel, Apr 17 2017 *)
  • PARI
    A263673(n) = lcm(vector(n,i,i)) / binomial(n,n\2);

Formula

a(n) = A003418(n) / A001405(n).
a(n) = A048619(n-1) * A110654(n).
a(2*n) = A068550(n) = A099996(n) / A000984(n).
a(n) = A180000(n)*A152271(n). - Peter Luschny, Oct 23 2015
a(n) = (e/2)^(n + o(1)). - Charles R Greathouse IV, Oct 23 2015
Showing 1-4 of 4 results.