A120101
Triangle T(n,k) = lcm(1,...,2*n+2)/((k+1)*binomial(2*k+2,k+1)).
Original entry on oeis.org
1, 6, 1, 30, 5, 1, 420, 70, 14, 3, 1260, 210, 42, 9, 2, 13860, 2310, 462, 99, 22, 5, 180180, 30030, 6006, 1287, 286, 65, 15, 360360, 60060, 12012, 2574, 572, 130, 30, 7, 6126120, 1021020, 204204, 43758, 9724, 2210, 510, 119, 28, 116396280, 19399380, 3879876, 831402, 184756, 41990, 9690, 2261, 532, 126
Offset: 0
Triangle begins:
1;
6, 1;
30, 5, 1;
420, 70, 14, 3;
1260, 210, 42, 9, 2;
13860, 2310, 462, 99, 22, 5;
180180, 30030, 6006, 1287, 286, 65, 15;
360360, 60060, 12012, 2574, 572, 130, 30, 7;
-
Flat(List([0..9],n->List([0..n],k->Lcm(List([1..2*n+2],i->i))/((k+1)*Binomial(2*k+2,k+1))))); # Muniru A Asiru, Feb 26 2019
-
[Lcm([1..2*n+2])/((k+1)*(k+2)*Catalan(k+1)): k in [0..n], n in [0..12]]; // G. C. Greubel, May 03 2023
-
T:=(n,k)-> ilcm(seq(q,q=1..2*n+2))/((k+1)*binomial(2*k+2,k+1)): seq(seq(T(n,k),k=0..n),n=0..9); # Muniru A Asiru, Feb 26 2019
-
Table[LCM@@Range[2*n+2]/((k+1)*Binomial[2*k+2,k+1]), {n,0,12}, {k,0, n}]//Flatten (* G. C. Greubel, May 03 2023 *)
-
def A120101(n,k):
return lcm(range(1,2*n+3))/((k+1)*(k+2)*catalan_number(k+1))
flatten([[A120101(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, May 03 2023
A048619
a(n) = LCM(binomial(n,0), ..., binomial(n,n)) / binomial(n,floor(n/2)).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 3, 3, 4, 2, 10, 5, 30, 15, 7, 7, 56, 28, 252, 126, 60, 30, 330, 165, 396, 198, 286, 143, 2002, 1001, 15015, 15015, 7280, 3640, 1768, 884, 15912, 7956, 3876, 1938, 38760, 19380, 406980, 203490, 99484, 49742, 1144066, 572033, 1961256, 980628
Offset: 0
If n=10 then A002944(10)=2520, A001405(10)=252, the quotient a(10)=10.
-
[Lcm([1..n+1]) div (Floor((n+3)/2)*Binomial(n+1,Floor((n+3)/2))): n in [0..50]]; // Vincenzo Librandi, Jul 10 2019
-
Table[Apply[LCM, Binomial[n, Range[0, n]]]/Binomial[n, Floor[n/2]], {n, 0, 48}] (* Michael De Vlieger, Jun 29 2017 *)
-
{A048619(n) = lcm(vector(n+1, i, i)) / binomial(n+1, (n+1)\2) / ((n+2)\2);}
Definition corrected and a(0)=1 prepended by
Max Alekseyev, Oct 23 2015
A068550
a(n) = lcm{1, ..., 2n} / binomial(2n, n).
Original entry on oeis.org
1, 1, 2, 3, 12, 10, 30, 105, 56, 252, 1260, 330, 1980, 2574, 2002, 15015, 240240, 61880, 15912, 151164, 38760, 406980, 4476780, 1144066, 13728792, 24515700, 6249100, 84362850, 21474180, 5462730, 81940950, 1270084725, 645122400
Offset: 0
- Hojoo Lee, Re: LCM [1,2,..,N] > 2^{N-1}, NMBRTHRY Mailing List, Feb 18 2002.
- Daniel Ropp, Solution to Problem 31, Crux Mathematicorum, Vol. 13, No. 10 (1987), p. 314.
-
a[0] = 1; a[n_] := (LCM @@ Range[2*n])/Binomial[2*n, n]; Array[a, 33, 0] (* Amiram Eldar, Mar 06 2022 *)
-
a(n) = lcm([1..2*n])/binomial(2*n, n); \\ Michel Marcus, Mar 06 2022
A119636
a(n) = lcm(1,...,2n+4)/((n+1)*binomial(2n+2, n+1)).
Original entry on oeis.org
6, 5, 14, 9, 22, 65, 30, 119, 532, 126, 690, 825, 594, 4147, 62062, 15015, 3640, 32708, 7956, 79458, 833340, 203490, 2337874, 4004231, 980628, 12738550, 3124550, 766935, 11113830, 166613265, 81940950
Offset: 0
-
List([0..40],n->Lcm(List([1..2*n+4]))/((n+1)*Binomial(2*n+2,n+1))); # Muniru A Asiru, Mar 04 2019
-
[Lcm([1..2*n+4])/((n+1)*Binomial(2*n+2, n+1)): n in [0..40]]; // G. C. Greubel, Mar 04 2019
-
Table[LCM@@Range[2n+4]/((n+1)Binomial[2n+2,n+1]),{n,0,30}] (* Harvey P. Dale, Jun 08 2018 *)
-
[lcm(range(1, 2*(n+2)+1))/((n+1)*binomial(2*n+2, n+1)) for n in (0..40)] # G. C. Greubel, Mar 04 2019
A156744
Coefficients for estimation of derivative from equally spaced numerical data using the Lagrange interpolating polynomial.
Original entry on oeis.org
-1, 0, 1, 1, -8, 0, 8, -1, -1, 9, -45, 0, 45, -9, 1, 3, -32, 168, -672, 0, 672, -168, 32, -3
Offset: 1
Irregular triangle begins:
-1, 0, 1;
1, -8, 0, 8, -1;
-1, 9, -45, 0, 45, -9, 1;
3, -32, 168, -672, 0, 672, -168, 32, -3;
-2, 25, -150, 600, -2100, 0, 2100, -600, 150, -25, 2; ...
When divided by sequence
A099996, this triangle gives the coefficients needed to estimate derivatives from equally spaced numerical data using Lagrange interpolation. The first and last entry of each row of the triangle has absolute value lcm{1, 2, ..., 2*n}/n*binomial(2n, n), as seen in
A068553.
-
facs[x_, j_, n_] := Product[If[k == j, 1, x - k], {k, -n, n}]
coefs[x_, n_] := Table[facs[x, j, n]/facs[j, j, n], {j, -n, n}]
d[n_] := Apply[LCM, Table[j, {j, 1, 2*n}]]
dCoefs[x_, n_] := d[n] D[coefs[y, n], y] /. {y -> x}
MatrixForm[Table[dCoefs[0, n], {n, 1, 5}]]
Showing 1-5 of 5 results.
Comments