cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A120101 Triangle T(n,k) = lcm(1,...,2*n+2)/((k+1)*binomial(2*k+2,k+1)).

Original entry on oeis.org

1, 6, 1, 30, 5, 1, 420, 70, 14, 3, 1260, 210, 42, 9, 2, 13860, 2310, 462, 99, 22, 5, 180180, 30030, 6006, 1287, 286, 65, 15, 360360, 60060, 12012, 2574, 572, 130, 30, 7, 6126120, 1021020, 204204, 43758, 9724, 2210, 510, 119, 28, 116396280, 19399380, 3879876, 831402, 184756, 41990, 9690, 2261, 532, 126
Offset: 0

Views

Author

Paul Barry, Jun 09 2006

Keywords

Comments

The rows give the coefficients of polynomials arising in the integration of x^(2m)/sqrt(4-x^2), m >= 0.

Examples

			Triangle begins:
       1;
       6,     1;
      30,     5,     1;
     420,    70,    14,    3;
    1260,   210,    42,    9,   2;
   13860,  2310,   462,   99,  22,   5;
  180180, 30030,  6006, 1287, 286,  65, 15;
  360360, 60060, 12012, 2574, 572, 130, 30, 7;
		

Crossrefs

First column is A119634. Second column is A051538. Main diagonal is A068553. Subdiagonal is A119636. Inverse is A120113. Row sums are A120106. Diagonal sums are A120107.

Programs

  • GAP
    Flat(List([0..9],n->List([0..n],k->Lcm(List([1..2*n+2],i->i))/((k+1)*Binomial(2*k+2,k+1))))); # Muniru A Asiru, Feb 26 2019
    
  • Magma
    [Lcm([1..2*n+2])/((k+1)*(k+2)*Catalan(k+1)): k in [0..n], n in [0..12]]; // G. C. Greubel, May 03 2023
    
  • Maple
    T:=(n,k)-> ilcm(seq(q,q=1..2*n+2))/((k+1)*binomial(2*k+2,k+1)): seq(seq(T(n,k),k=0..n),n=0..9); # Muniru A Asiru, Feb 26 2019
  • Mathematica
    Table[LCM@@Range[2*n+2]/((k+1)*Binomial[2*k+2,k+1]), {n,0,12}, {k,0, n}]//Flatten (* G. C. Greubel, May 03 2023 *)
  • SageMath
    def A120101(n,k):
        return lcm(range(1,2*n+3))/((k+1)*(k+2)*catalan_number(k+1))
    flatten([[A120101(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, May 03 2023

Formula

Number triangle T(n,k) = [k<=n] * lcm(1,...,2n+2)/((k+1)*binomial(2k+2, k+1)).

A048619 a(n) = LCM(binomial(n,0), ..., binomial(n,n)) / binomial(n,floor(n/2)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 3, 4, 2, 10, 5, 30, 15, 7, 7, 56, 28, 252, 126, 60, 30, 330, 165, 396, 198, 286, 143, 2002, 1001, 15015, 15015, 7280, 3640, 1768, 884, 15912, 7956, 3876, 1938, 38760, 19380, 406980, 203490, 99484, 49742, 1144066, 572033, 1961256, 980628
Offset: 0

Views

Author

Keywords

Examples

			If n=10 then A002944(10)=2520, A001405(10)=252, the quotient a(10)=10.
		

Crossrefs

Programs

  • Magma
    [Lcm([1..n+1]) div (Floor((n+3)/2)*Binomial(n+1,Floor((n+3)/2))): n in [0..50]]; // Vincenzo Librandi, Jul 10 2019
  • Mathematica
    Table[Apply[LCM, Binomial[n, Range[0, n]]]/Binomial[n, Floor[n/2]], {n, 0, 48}] (* Michael De Vlieger, Jun 29 2017 *)
  • PARI
    {A048619(n) = lcm(vector(n+1, i, i)) / binomial(n+1, (n+1)\2) / ((n+2)\2);}
    

Formula

a(n) = A002944(n)/A001405(n).
a(n) = lcm(1..n+1)/(floor((n+3)/2)*binomial(n+1,floor((n+3)/2))). - Paul Barry, Jul 03 2006
a(n) = lcm(1,2,...,n+1) / (ceiling((n+1)/2)*binomial(n+1,floor((n+1)/2))) = A003418(n+1) / A100071(n+1). - Max Alekseyev, Oct 23 2015
a(n) = A263673(n+1) / A110654(n+1) = A180000(n+1) / A152271(n). - Max Alekseyev, Oct 23 2015
a(2*n-1) = A068553(n) = A068550(n)/n.

Extensions

Definition corrected and a(0)=1 prepended by Max Alekseyev, Oct 23 2015

A068550 a(n) = lcm{1, ..., 2n} / binomial(2n, n).

Original entry on oeis.org

1, 1, 2, 3, 12, 10, 30, 105, 56, 252, 1260, 330, 1980, 2574, 2002, 15015, 240240, 61880, 15912, 151164, 38760, 406980, 4476780, 1144066, 13728792, 24515700, 6249100, 84362850, 21474180, 5462730, 81940950, 1270084725, 645122400
Offset: 0

Views

Author

N. J. A. Sloane, Mar 23 2002

Keywords

Comments

Known to be always an integer.

Crossrefs

Bisection of A180000 and A263673.

Programs

  • Mathematica
    a[0] = 1; a[n_] := (LCM @@ Range[2*n])/Binomial[2*n, n]; Array[a, 33, 0] (* Amiram Eldar, Mar 06 2022 *)
  • PARI
    a(n) = lcm([1..2*n])/binomial(2*n, n); \\ Michel Marcus, Mar 06 2022

Formula

a(n) = A099996(n) / A000984(n) = A003418(2*n) / A001405(2*n) = A180000(2*n) = A263673(2*n).
a(n) = n * A068553(n) = n * A048619(2*n-1).

Extensions

a(0)=1 prepended by Max Alekseyev, Oct 23 2015

A119636 a(n) = lcm(1,...,2n+4)/((n+1)*binomial(2n+2, n+1)).

Original entry on oeis.org

6, 5, 14, 9, 22, 65, 30, 119, 532, 126, 690, 825, 594, 4147, 62062, 15015, 3640, 32708, 7956, 79458, 833340, 203490, 2337874, 4004231, 980628, 12738550, 3124550, 766935, 11113830, 166613265, 81940950
Offset: 0

Views

Author

Paul Barry, Jun 09 2006

Keywords

Comments

Subdiagonal of A120101.

Crossrefs

Cf. A068553.

Programs

  • GAP
    List([0..40],n->Lcm(List([1..2*n+4]))/((n+1)*Binomial(2*n+2,n+1))); # Muniru A Asiru, Mar 04 2019
    
  • Magma
    [Lcm([1..2*n+4])/((n+1)*Binomial(2*n+2, n+1)): n in [0..40]]; // G. C. Greubel, Mar 04 2019
  • Mathematica
    Table[LCM@@Range[2n+4]/((n+1)Binomial[2n+2,n+1]),{n,0,30}] (* Harvey P. Dale, Jun 08 2018 *)
  • Sage
    [lcm(range(1, 2*(n+2)+1))/((n+1)*binomial(2*n+2, n+1)) for n in (0..40)] # G. C. Greubel, Mar 04 2019
    

A156744 Coefficients for estimation of derivative from equally spaced numerical data using the Lagrange interpolating polynomial.

Original entry on oeis.org

-1, 0, 1, 1, -8, 0, 8, -1, -1, 9, -45, 0, 45, -9, 1, 3, -32, 168, -672, 0, 672, -168, 32, -3
Offset: 1

Views

Author

Bruce Boghosian, Feb 14 2009

Keywords

Comments

An effective way to approximate the derivative of equally spaced numerical data is to differentiate its Lagrange interpolating polynomial. If y[x] is equally spaced data from x = -n to +n, its Lagrange interpolating polynomial P(x) has degree 2*n+1. Then P'(0) may be expressed as a weighted sum over the y[x]. This is the triangle of coefficients C[n,m] such that P'(0) = (1/d[n]) * Sum_{m=-n}^n C[n,m] y[m]. The denominator d[n] is given by sequence A099996. This is very useful in numerical analysis. For example, when n=1, this gives the centered difference approximation to the derivative.

Examples

			Irregular triangle begins:
  -1, 0, 1;
  1, -8, 0, 8, -1;
  -1, 9, -45, 0, 45, -9, 1;
  3, -32, 168, -672, 0, 672, -168, 32, -3;
  -2, 25, -150, 600, -2100, 0, 2100, -600, 150, -25, 2;  ...
		

Crossrefs

When divided by sequence A099996, this triangle gives the coefficients needed to estimate derivatives from equally spaced numerical data using Lagrange interpolation. The first and last entry of each row of the triangle has absolute value lcm{1, 2, ..., 2*n}/n*binomial(2n, n), as seen in A068553.

Programs

  • Mathematica
    facs[x_, j_, n_] := Product[If[k == j, 1, x - k], {k, -n, n}]
    coefs[x_, n_] := Table[facs[x, j, n]/facs[j, j, n], {j, -n, n}]
    d[n_] := Apply[LCM, Table[j, {j, 1, 2*n}]]
    dCoefs[x_, n_] := d[n] D[coefs[y, n], y] /. {y -> x}
    MatrixForm[Table[dCoefs[0, n], {n, 1, 5}]]
Showing 1-5 of 5 results.