A068679 Numbers which yield a prime whenever a 1 is inserted anywhere in them (including at the beginning or end).
1, 3, 7, 13, 31, 49, 63, 81, 91, 99, 103, 109, 117, 123, 151, 181, 193, 213, 231, 279, 319, 367, 427, 459, 571, 601, 613, 621, 697, 721, 801, 811, 951, 987, 1113, 1117, 1131, 1261, 1821, 1831, 1939, 2101, 2149, 2211, 2517, 2611, 3151, 3219, 4011, 4411, 4519, 4887, 5031, 5361, 6231, 6487, 6871, 7011, 7209, 8671, 9141, 9801, 10051
Offset: 1
Examples
123 belongs to this sequence as the numbers 1123, 1213, 1231 obtained by inserting a 1 in all possible ways are all primes.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..3314 (terms < 2*10^13, first 1929 terms from Chai Wah Wu)
- C. Caldwell, Prime Pages
Programs
-
Mathematica
d[n_]:=IntegerDigits[n]; ins[n_]:=FromDigits/@Table[Insert[d[n],1,k],{k,Length[d[n]]+1}]; Select[Range[10060],And@@PrimeQ/@ins[#] &] (* Jayanta Basu, May 20 2013 *) Select[Range[11000],AllTrue[FromDigits/@Table[Insert[ IntegerDigits[ #],1,n],{n,IntegerLength[#]+1}],PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 16 2020 *)
-
Python
from sympy import isprime A068679_list, n = [], 1 while len(A068679_list) < 1000: if isprime(10*n+1): s = str(n) for i in range(len(s)): if not isprime(int(s[:i]+'1'+s[i:])): break else: A068679_list.append(n) n += 1 # Chai Wah Wu, Oct 02 2019
Extensions
More terms from Eli McGowan (ejmcgowa(AT)mail.lakeheadu.ca), Apr 11 2002
More terms from Vladeta Jovovic, Apr 16 2002
Comments