cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A068794 In prime factorization of n replace all primes with the least prime factor of n; a(1)=1.

Original entry on oeis.org

1, 2, 3, 4, 5, 4, 7, 8, 9, 4, 11, 8, 13, 4, 9, 16, 17, 8, 19, 8, 9, 4, 23, 16, 25, 4, 27, 8, 29, 8, 31, 32, 9, 4, 25, 16, 37, 4, 9, 16, 41, 8, 43, 8, 27, 4, 47, 32, 49, 8, 9, 8, 53, 16, 25, 16, 9, 4, 59, 16, 61, 4, 27, 64, 25, 8, 67, 8, 9, 8, 71, 32
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 05 2002

Keywords

Comments

a(n)<=n<=A068795(n);
a(n) = A068795(n) iff n=1 or n=p^k for some prime p, k>0.
a(30)=a(2*3*5)=2*2*2=8.

Programs

  • Mathematica
    lpf[n_]:=Module[{fi=FactorInteger[n]},Times@@PadRight[{},Total[ fi[[All,2]]], fi[[1,1]]]]; Array[lpf,80] (* Harvey P. Dale, Apr 14 2020 *)

Formula

a(n) = A020639(n)^A001222(n).

A079871 a(1)=1 and for n>1: ceiling(n^(1/Omega(n)))^Omega(n), where Omega(n) is the total number of prime factors of n (A001222).

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 7, 8, 9, 16, 11, 27, 13, 16, 16, 16, 17, 27, 19, 27, 25, 25, 23, 81, 25, 36, 27, 64, 29, 64, 31, 32, 36, 36, 36, 81, 37, 49, 49, 81, 41, 64, 43, 64, 64, 49, 47, 243, 49, 64, 64, 64, 53, 81, 64, 81, 64, 64, 59, 81, 61, 64, 64, 64, 81, 125, 67, 125, 81, 125, 71
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 13 2003

Keywords

Crossrefs

Programs

  • Mathematica
    A079871[n_] := If [n == 1, 1, Ceiling[n^(1/#)]^# & [PrimeOmega[n]]];
    Array[A079871, 100] (* Paolo Xausa, Oct 27 2024 *)
  • PARI
    a(n) = if (n==1, 1, ceil(n^(1/bigomega(n)))^bigomega(n)); \\ Michel Marcus, May 31 2016

Formula

a(n) = A079870(n)^A001222(n).
a(n) >= A079869(n); A020639(n) <= a(n) <= A006530(n);
a(m) = m = A079869(m) iff m is a prime power (A000961).

A079869 a(1)=1 and for n>1: round(n^(1/Omega(n)))^Omega(n), where Omega(n) is the total number of prime factors of n (A001222).

Original entry on oeis.org

1, 2, 3, 4, 5, 4, 7, 8, 9, 9, 11, 8, 13, 16, 16, 16, 17, 27, 19, 27, 25, 25, 23, 16, 25, 25, 27, 27, 29, 27, 31, 32, 36, 36, 36, 16, 37, 36, 36, 81, 41, 27, 43, 64, 64, 49, 47, 32, 49, 64, 49, 64, 53, 81, 49, 81, 64, 64, 59, 81, 61, 64, 64, 64, 64, 64, 67, 64, 64, 64, 71, 32, 73
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 13 2003

Keywords

Comments

A079867(n)<=a(n)<=A079869(n); A020639(n)<=a(n)<=A006530(n);
a(m)=m=A079867(m)=A079871(m) iff m is a prime power (A000961).

Crossrefs

Programs

  • Mathematica
    ron[n_]:=Module[{c=PrimeOmega[n]},Round[n^(1/c)]^c]; Join[{1},Array[ ron,80,2]] (* Harvey P. Dale, Jun 17 2020 *)

A079870 a(1)=1 and for n>1: ceiling(n^(1/Omega(n))), where Omega(n) is the total number of prime factors of n (A001222).

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 2, 3, 4, 11, 3, 13, 4, 4, 2, 17, 3, 19, 3, 5, 5, 23, 3, 5, 6, 3, 4, 29, 4, 31, 2, 6, 6, 6, 3, 37, 7, 7, 3, 41, 4, 43, 4, 4, 7, 47, 3, 7, 4, 8, 4, 53, 3, 8, 3, 8, 8, 59, 3, 61, 8, 4, 2, 9, 5, 67, 5, 9, 5, 71, 3, 73, 9, 5, 5, 9, 5, 79, 3, 3, 10, 83, 4, 10, 10, 10, 4, 89, 4, 10, 5, 10
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 13 2003

Keywords

Crossrefs

Programs

  • Mathematica
    A079870[n_] := If [n == 1, 1, Ceiling[n^(1/PrimeOmega[n])]];
    Array[A079870, 100] (* Paolo Xausa, Oct 28 2024 *)
  • PARI
    a(n) = if (n==1, 1, ceil(n^(1/bigomega(n)))); \\ Michel Marcus, May 31 2016

Formula

A079871(n) = a(n)^A001222(n).
a(n) >= A079868(n); A020639(n) <= a(n) <= A006530(n);
a(m) = A079868(m) iff m is a prime power (A000961).

A376567 a(n) = binomial(bigomega(n) + omega(n), omega(n)), where bigomega = A001222 and omega = A001221.

Original entry on oeis.org

1, 2, 2, 3, 2, 6, 2, 4, 3, 6, 2, 10, 2, 6, 6, 5, 2, 10, 2, 10, 6, 6, 2, 15, 3, 6, 4, 10, 2, 20, 2, 6, 6, 6, 6, 15, 2, 6, 6, 15, 2, 20, 2, 10, 10, 6, 2, 21, 3, 10, 6, 10, 2, 15, 6, 15, 6, 6, 2, 35, 2, 6, 10, 7, 6, 20, 2, 10, 6, 20, 2, 21, 2, 6, 10, 10, 6, 20, 2
Offset: 1

Views

Author

Michael De Vlieger, Oct 09 2024

Keywords

Comments

For prime power p^k, a(p^k) = A010846(p^k) = A000005(p^k) = k+1. Therefore, for prime p, a(p) = A010846(p) = A000005(p) = 2.
For n in A024619, a(n) != A010846(n) and A010846(n) > A000005(n).

Crossrefs

Programs

  • Maple
    with(NumberTheory):
    a := n -> binomial(Omega(n) + Omega(n, distinct), Omega(n, distinct)):
    seq(a(n), n = 1..79);  # Peter Luschny, Oct 25 2024
  • Mathematica
    Array[Binomial[#2 + #1, #1] & @@ {PrimeNu[#], PrimeOmega[#]} &, 120]

Formula

a(n) = length of row n of A376248.
a(n) = A010846(n) - A376846(n) + A376847(n).

A079867 a(1)=1 and for n>1: floor(n^(1/Omega(n)))^Omega(n), where Omega(n) is the total number of prime factors of n (A001222).

Original entry on oeis.org

1, 2, 3, 4, 5, 4, 7, 8, 9, 9, 11, 8, 13, 9, 9, 16, 17, 8, 19, 8, 16, 16, 23, 16, 25, 25, 27, 27, 29, 27, 31, 32, 25, 25, 25, 16, 37, 36, 36, 16, 41, 27, 43, 27, 27, 36, 47, 32, 49, 27, 49, 27, 53, 16, 49, 16, 49, 49, 59, 16, 61, 49, 27, 64, 64, 64, 67, 64, 64, 64, 71, 32, 73, 64
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 13 2003

Keywords

Comments

a(n)<=A079869(n); A020639(n)<=a(n)<=A006530(n);
a(m)=m=A079869(m)=A079871(m) iff m is a prime power (A000961).

Crossrefs

a(n)=A079866(n)^A001222(n), cf. A068794, A068795.

Programs

  • Mathematica
    Join[{1},Table[Floor[n^(1/PrimeOmega[n])]^PrimeOmega[n],{n,2,80}]] (* Harvey P. Dale, May 19 2018 *)

A079881 mpf(n)^Omega(n), where mpf(n) is the median prime factor of n (A079879).

Original entry on oeis.org

1, 2, 3, 4, 5, 4, 7, 8, 9, 4, 11, 8, 13, 4, 9, 16, 17, 27, 19, 8, 9, 4, 23, 16, 25, 4, 27, 8, 29, 27, 31, 32, 9, 4, 25, 16, 37, 4, 9, 16, 41, 27, 43, 8, 27, 4, 47, 32, 49, 125, 9, 8, 53, 81, 25, 16, 9, 4, 59, 16, 61, 4, 27, 64, 25, 27, 67, 8, 9, 125, 71, 32, 73, 4, 125, 8, 49, 27, 79, 32
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 13 2003

Keywords

Comments

A068794(n)<=a(n)<=A068795(n);
a(m)=m=A068794(m)=A068795(m) iff m is a prime power (A000961).

Crossrefs

a(n)=A079879(n)^A001222(n), A033676, O000004.

A376847 Number of m > n such that rad(m) | n and Omega(m) <= Omega(n), where rad = A007947 and Omega = A001222.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 1, 0, 3, 1, 1, 0, 4, 0, 1, 0, 3, 0, 4, 0, 0, 1, 1, 1, 2, 0, 1, 1, 5, 0, 5, 0, 3, 2, 1, 0, 6, 0, 1, 1, 3, 0, 1, 1, 5, 1, 1, 0, 11, 0, 1, 2, 0, 1, 5, 0, 3, 1, 5, 0, 4, 0, 1, 1, 3, 1, 5, 0, 8, 0, 1, 0, 11, 1, 1, 1
Offset: 1

Views

Author

Michael De Vlieger, Oct 13 2024

Keywords

Examples

			Table of select n such that a(n) > 0:
   n  a(n)  List of m in A376248 such that Omega(m) <= Omega(n)
  -------------------------------------------------------------
   6    1   {9}
  10    1   {25}
  12    2   {18, 27}
  14    1   {49}
  15    1   {25}
  18    1   {27}
  20    3   {25, 50, 125}
  24    4   {27, 36, 54, 81}
  28    3   {49, 98, 343}
  30    4   {45, 50, 75, 125}
  40    5   {50, 100, 125, 250, 625}
  48    6   {54, 72, 81, 108, 162, 243}
  60   11   {75, 81, 90, 100, 125, 135, 150, 225, 250, 375, 625}
		

Crossrefs

Programs

  • Maple
    with(NumberTheory):
    cond := (m, n) -> irem(n, Radical(m)) = 0 and Omega(m) <= Omega(n):
    a := n -> nops(select(m -> cond(m, n), [seq(n+1..A068795(n))])):
    seq(a(n), n = 1..87);  # Peter Luschny, Oct 25 2024
  • Mathematica
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
    Table[k = PrimeOmega[n]; w = PrimeNu[n]; Binomial[k + w, w] - Count[Range[n], _?(And[Divisible[n, rad[#]], PrimeOmega[#] > k] &)], {n, 120}]

Formula

a(n) = card({m > n : rad(m) | n, Omega(m) <= Omega(n) }).
a(n) = 0 for prime power n (in A000961).
a(n) = card(A376248 \ A162306).
a(n) = A376567(n) - A010846(n) + A376546(n) = binomial(A001222(n) + A001221(n), A001221(n)) - A010846(n) + A376546(n).
Showing 1-8 of 8 results.