cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A178796 An ascending sequence of primes a(n) such that either the sum of decimal digits of a(n) is divisible by the sum of decimal digits of a(n+1) or vice versa.

Original entry on oeis.org

2, 11, 13, 17, 31, 53, 71, 79, 97, 101, 103, 107, 211, 233, 251, 277, 349, 367, 431, 439, 457, 503, 521, 547, 619, 673, 691, 701, 709, 727, 853, 907, 1021, 1061, 1069, 1087, 1151, 1201, 1223, 1249, 1429, 1447, 1483, 1511, 1601, 1609, 1627, 1663, 1753, 1861, 1933, 1951, 2011, 2099
Offset: 1

Views

Author

Giovanni Teofilatto, Jun 15 2010

Keywords

Examples

			The sums of the digits of a(n) form the sequence d(n) = 2, 2, 4, 8, 4, 8, 8, 16, ... in which either d(n)/d(n+1) or d(n+1)/d(n) is an integer.
		

Crossrefs

Different from A068807.

Programs

  • Maple
    A178796 := proc(n) option remember; if n = 1 then 2; else a := nextprime(procname(n-1)) ; while true do r := A007953(a)/ A007953(procname(n-1)) ; if numer(r) = 1 or denom(r) = 1 then return a; end if; a := nextprime(a) ; end do: end if; end proc:
    seq(A178796(n),n=1..80) ; # R. J. Mathar, Jun 28 2010
  • Mathematica
    nxt[n_]:=Module[{k=NextPrime[n],tidn=Total[IntegerDigits[n]]},While[ !Divisible[ Total[ IntegerDigits[ k]],tidn] && !Divisible[ tidn,Total[ IntegerDigits[k]]],k=NextPrime[k]];k]; NestList[nxt,2,60] (* Harvey P. Dale, Aug 23 2017 *)

Extensions

Corrected by Giovanni Teofilatto, Jun 25 2010
Definition corrected, sequence extended, example added by R. J. Mathar, Jun 28 2010

A261456 Prime numbers whose sum of digits is not a power of 2.

Original entry on oeis.org

3, 5, 7, 19, 23, 29, 37, 41, 43, 47, 59, 61, 67, 73, 83, 89, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 223, 227, 229, 239, 241, 257, 263, 269, 271, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 353, 359, 373
Offset: 1

Views

Author

Altug Alkan, Aug 19 2015

Keywords

Comments

Complement of A068807 with respect to primes.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(400) | not PrimeDivisors(s) eq [2] where s is &+Intseq(p)]; // Vincenzo Librandi, Aug 19 2015
  • Mathematica
    Select[Prime@Range[80], !IntegerQ[Log[2, Plus@@IntegerDigits[#]]] &] (* Vincenzo Librandi, Aug 19 2015 *)
  • PARI
    lista(nn) = forprime (n=1, nn, sd = sumdigits(n); if (2^valuation(sd,2) != sd, print1(n, ", "))); \\ Michel Marcus, Aug 19 2015
    

A308163 Numbers for which the sum of the digits of any divisor is a power of 2.

Original entry on oeis.org

1, 2, 4, 8, 11, 13, 17, 22, 26, 31, 44, 53, 62, 71, 79, 88, 97, 101, 103, 107, 121, 143, 169, 187, 202, 206, 211, 233, 242, 251, 277, 286, 341, 349, 367, 404, 422, 431, 439, 457, 466, 484, 503, 521, 547, 583, 619, 673, 682, 691, 701, 709, 727, 781, 808, 844
Offset: 1

Views

Author

Marius A. Burtea, Jun 11 2019

Keywords

Comments

The prime numbers in A068807 belong to the sequence.

Examples

			Divisors(8) = {1, 2, 4, 8} with sums of digits respectively 1, 2, 4, 8, powers of 2.
Divisors(13) = {1, 13} with sums of digits 1 and 4, powers of 2 .
Divisors(286) = {1, 2, 11, 13, 22, 26, 143, 286} with sums of digits respectively 1, 2, 2, 4, 4, 8, 16, powers of 2.
		

Crossrefs

Programs

  • Magma
    sol:=[]; m:=1;for n in [1..850] do nr:=#[d: d in Divisors(n) | PrimeDivisors(&+Intseq(d)) eq [2]];  if nr eq #Divisors(n)-1 then sol[m]:=n; m:=m+1; end if; end for; sol;
    
  • PARI
    ispp(n) = (n==1) || (isprimepower(n, &p) && (p==2));
    isok(n) = fordiv(n, d, if (!ispp(sumdigits(d)), return (0))); return (1); \\ Michel Marcus, Jun 12 2019
Showing 1-3 of 3 results.