A030283 a(0) = 0; for n>0, a(n) is the smallest number greater than a(n-1) which does not use any digit used by a(n-1).
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 22, 30, 41, 50, 61, 70, 81, 90, 111, 200, 311, 400, 511, 600, 711, 800, 911, 2000, 3111, 4000, 5111, 6000, 7111, 8000, 9111, 20000, 31111, 40000, 51111, 60000, 71111, 80000, 91111, 200000, 311111, 400000, 511111, 600000
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..5000
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,0,0,0,0,10,0,-10).
Programs
-
Haskell
a030283 n = a030283_list !! n a030283_list = 0 : f 1 9 0 where f u v w = w' : f u' v' w' where w' = until (> w) ((+ v) . (* 10)) u (u',v') = h u v h 1 0 = (2,2); h 9 0 = (1,1); h 9 1 = (2,0); h 9 9 = (1,0) h u 2 = (u+1,0); h u v = (u+1,1-v) -- Reinhard Zumkeller, May 03 2012
-
Mathematica
a = {0}; For[n = 1, n < 1000000, n++, If[Length[Intersection[IntegerDigits[n], IntegerDigits[a[[ -1]]]]] == 0, AppendTo[a, n]]]; a (* Stefan Steinerberger, May 30 2007 *)
Formula
a(n) = a(n-2) + 10*a(n-8) - 10*a(n-10) for n > 29. - Nicolas Bělohoubek, Jul 01 2024
Extensions
Edited by N. J. A. Sloane at the suggestion of Rick L. Shepherd, Sep 27 2007
Definition clarified by Harvey P. Dale, Oct 19 2012
Comments