cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A366766 Array read by antidiagonals, where each row is the counting sequence of a certain type of free polyominoids (see comments).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 3, 2, 1, 0, 1, 0, 1, 7, 5, 0, 1, 0, 1, 0, 1, 20, 16, 0, 1, 1, 0, 1, 0, 1, 60, 55, 0, 2, 1, 1, 0, 1, 0, 1, 204, 222, 0, 5, 2, 2, 1, 0, 1, 0, 1, 702, 950, 0, 12, 5, 5, 0, 1
Offset: 1

Views

Author

Pontus von Brömssen, Oct 22 2023

Keywords

Comments

A (D,d)-polyominoid is a connected set of d-dimensional unit cubes (cells) with integer coordinates in D-dimensional space. For normal polyominoids, two cells are connected if they share a (d-1)-dimensional facet, but here we allow connections where the cells share a lower-dimensional face.
Each row is the counting sequence (by number of cells) of (D,d)-polyominoids with certain restrictions on the allowed connections between cells. Two cells have a connection of type (g,h) if they intersect in a (d-g)-dimensional unit cube and extend in d-h common dimensions. For example, d-dimensional polyominoes use connections of type (1,0), polyplets use connections of types (1,0) (edge connections) and (2,0) (corner connections), normal (3,2)-polyominoids use connections of types (1,0) ("soft" connections) and (1,1) ("hard" connections), hard polyominoids use connections of type (1,1).
Each row corresponds to a triple (D,d,C), where 1 <= d <= D and C is a set of pairs (g,h) with 1 <= g <= d and 0 <= h <= min(g, D-d). The k-th term of that row is the number of free k-celled (D,d)-polyominoids with connections of the types in C. Connections of types not in C are permitted, but the polyominoids must be connected through the specified connections only. For example, polyominoes may have cells that intersect in a point (g = 2) and hard polyominoids can have soft connections (h = 0) that are not needed to keep the polyominoids connected.
The rows are sorted first by D, then by d, and finally by a binary vector indicating which types of connections are allowed, where the connection types (g,h) are sorted lexicographically. (See table in cross-references.)
For each pair (D,d), the first row is 1, 0, 0, ..., corresponding to (D,d,{}) (no connections allowed).
The number of rows corresponding to given values of D and d is 2^((d+1)*(d+2)/2-1) if 2*d <= D and 2^((D-d+1)*(3*d-D+2)/2-1) otherwise.

Examples

			Array begins:
  n\k| 1  2  3  4  5   6    7     8      9     10      11       12
  ---+------------------------------------------------------------
   1 | 1  0  0  0  0   0    0     0      0      0       0        0
   2 | 1  1  1  1  1   1    1     1      1      1       1        1
   3 | 1  0  0  0  0   0    0     0      0      0       0        0
   4 | 1  1  1  1  1   1    1     1      1      1       1        1
   5 | 1  1  3  7 20  60  204   702   2526   9180   33989   126713
   6 | 1  2  5 16 55 222  950  4265  19591  91678  434005  2073783
   7 | 1  0  0  0  0   0    0     0      0      0       0        0
   8 | 1  1  2  5 12  35  108   369   1285   4655   17073    63600
   9 | 1  1  2  5 12  35  108   369   1285   4655   17073    63600
  10 | 1  2  5 22 94 524 3031 18770 118133 758381 4915652 32149296
  11 | 1  0  0  0  0   0    0     0      0      0       0        0
  12 | 1  1  1  1  1   1    1     1      1      1       1        1
		

Crossrefs

Cf. A366767 (fixed), A366768.
The following table lists some sequences that are rows of the array, together with the corresponding values of D, d, and C. Some sequences occur in more than one row. Notation used in the table:
X: Allowed connection.
-: Not allowed connection (but may occur "by accident" as long as it is not needed for connectedness).
.: Not applicable for (D,d) in this row.
!: d < D and all connections have h = 0, so these polyominoids live in d < D dimensions only.
*: Whether a connection of type (g,h) is allowed or not is independent of h.
| | | connections |
| | | g:1122233334 |
n | D | d | h:0101201230 | sequence
----+---+---+--------------+---------
1 | 1 | 1 | * -......... | A063524
2 | 1 | 1 | * X......... | A000012
3 |!2 | 1 | * --........ | A063524
4 |!2 | 1 | X-........ | A000012
5 | 2 | 1 | -X........ | A361625
6 | 2 | 1 | * XX........ | A019988
7 | 2 | 2 | * -.-....... | A063524
8 | 2 | 2 | * X.-....... | A000105
9 | 2 | 2 | * -.X....... | A000105
10 | 2 | 2 | * X.X....... | A030222
11 |!3 | 1 | * --........ | A063524
12 |!3 | 1 | X-........ | A000012
13 | 3 | 1 | -X........ | A365654
14 | 3 | 1 | * XX........ | A365559
15 |!3 | 2 | * ----...... | A063524
16 |!3 | 2 | X---...... | A000105
17 | 3 | 2 | -X--...... | A365654
18 | 3 | 2 | * XX--...... | A075679
19 |!3 | 2 | --X-...... | A000105
20 |!3 | 2 | X-X-...... | A030222
21 | 3 | 2 | -XX-...... | A365995
22 | 3 | 2 | XXX-...... | A365997
23 | 3 | 2 | ---X...... | A365999
24 | 3 | 2 | X--X...... | A366001
25 | 3 | 2 | -X-X...... | A366003
26 | 3 | 2 | XX-X...... | A366005
27 | 3 | 2 | * --XX...... | A365652
28 | 3 | 2 | X-XX...... | A366007
29 | 3 | 2 | -XXX...... | A366009
30 | 3 | 2 | * XXXX...... | A365650
31 | 3 | 3 | * -.-..-.... | A063524
32 | 3 | 3 | * X.-..-.... | A038119
33 | 3 | 3 | * -.X..-.... | A038173
34 | 3 | 3 | * X.X..-.... | A268666
35 | 3 | 3 | * -.-..X.... | A038171
36 | 3 | 3 | * X.-..X.... | A363205
37 | 3 | 3 | * -.X..X.... | A363206
38 | 3 | 3 | * X.X..X.... | A272368
39 |!4 | 1 | * --........ | A063524
40 |!4 | 1 | X-........ | A000012
41 | 4 | 1 | -X........ | A366340
42 | 4 | 1 | * XX........ | A365561
43 |!4 | 2 | * -----..... | A063524
44 |!4 | 2 | X----..... | A000105
45 | 4 | 2 | -X---..... | A366338
46 | 4 | 2 | * XX---..... | A366334
47 |!4 | 2 | --X--..... | A000105
48 |!4 | 2 | X-X--..... | A030222
...
75 |!4 | 3 | * ----.--... | A063524
76 |!4 | 3 | X---.--... | A038119
77 | 4 | 3 | -X--.--... | A366340
78 | 4 | 3 | * XX--.--... | A366336
...
139 | 4 | 4 | * -.-..-...- | A063524
140 | 4 | 4 | * X.-..-...- | A068870
141 | 4 | 4 | * -.X..-...- | A365356
142 | 4 | 4 | * X.X..-...- | A365363
143 | 4 | 4 | * -.-..X...- | A365354
144 | 4 | 4 | * X.-..X...- | A365361
145 | 4 | 4 | * -.X..X...- | A365358
146 | 4 | 4 | * X.X..X...- | A365365
147 | 4 | 4 | * -.-..-...X | A365353
148 | 4 | 4 | * X.-..-...X | A365360
149 | 4 | 4 | * -.X..-...X | A365357
150 | 4 | 4 | * X.X..-...X | A365364
151 | 4 | 4 | * -.-..X...X | A365355
152 | 4 | 4 | * X.-..X...X | A365362
153 | 4 | 4 | * -.X..X...X | A365359
154 | 4 | 4 | * X.X..X...X | A365366
155 |!5 | 1 | * --........ | A063524
156 |!5 | 1 | X-........ | A000012
157 | 5 | 1 | -X........ |
158 | 5 | 1 | * XX........ | A365563

A343909 Number of generalized polyforms on the tetrahedral-octahedral honeycomb with n cells.

Original entry on oeis.org

1, 2, 1, 4, 9, 44, 195, 1186, 7385, 49444, 337504, 2353664, 16608401, 118432965, 851396696, 6163949361, 44896941979
Offset: 0

Views

Author

Drake Thomas and Peter Kagey, May 03 2021

Keywords

Comments

This sequence counts "free" polyforms where holes are allowed. This means that two polyforms are considered the same if one is a rigid transformation (translation, rotation, reflection, or a combination thereof) of the other.

Examples

			For n = 1, the a(1) = 2 polyforms are the tetrahedron and the octahedron.
For n = 2, the a(2) = 1 polyform is a tetrahedron and an octahedron connected at a face.
For n = 3, there are a(3) = 4 polyforms with 3 cells:
  - 3 consisting of one octahedron with two tetrahedra, and
  - 1 consisting of two octahedra and one tetrahedron.
For n = 4, there are a(4) = 9 polyforms with 4 cells:
  - 3 with one octahedron and three tetrahedra,
  - 5 with two octahedra and three octahedra, and
  - 1 with three octahedra and one tetrahedron.
For n = 5, there are a(5) = 44 polyforms with 5 cells:
  - 6 with one octahedron and four tetrahedra,
  - 24 with two octahedra and three tetrahedra,
  - 13 with three octahedra and two tetrahedra, and
  - 1 with four octahedra and one tetrahedron.
		

Crossrefs

Row sums of A365970.
Analogous for other honeycombs/tilings: A000105 (square), A000228 (hexagonal), A000577 (triangular), A038119 (cubical), A068870 (tesseractic), A197156 (prismatic pentagonal), A197159 (floret pentagonal), A197459 (rhombille), A197462 (kisrhombille), A197465 (tetrakis square), A309159 (snub square), A343398 (trihexagonal), A343406 (truncated hexagonal), A343577 (truncated square).

Extensions

a(11)-a(16) from Bert Dobbelaere, Jun 10 2025

A365366 Number of free 4-dimensional polyhypercubes with n cells, allowing corner-, edge-, face-, and 3-face-connections.

Original entry on oeis.org

1, 4, 30, 835, 43828
Offset: 1

Views

Author

Pontus von Brömssen, Sep 05 2023

Keywords

Crossrefs

Connections |
(0 = corner, 1 = edge, | Polyhypercubes in dimension
2 = face, 3 = 3-face) | 2 3 4
-----------------------+----------------------------
3 | A068870
0 3 | A365360
1 3 | A365361
01 3 | A365362
23 | A365363
0 23 | A365364
123 | A365365
0123 | A365366
*There is a one-to-one correspondence between corner-connected and edge-connected 2-dimensional polyominoes, but see A364928.
154th row of A366766.

A151830 Number of fixed 4-dimensional polycubes with n cells.

Original entry on oeis.org

1, 4, 28, 234, 2162, 21272, 218740, 2323730, 25314097, 281345096, 3178474308, 36400646766, 421693622520, 4933625049464, 58216226287844, 692095652493483
Offset: 1

Views

Author

N. J. A. Sloane, Jul 12 2009

Keywords

References

  • G. Aleksandrowicz and G. Barequet, Counting d-dimensional polycubes and nonrectangular planar polyominoes, Int. J. of Computational Geometry and Applications, 19 (2009), 215-229.
  • G. Aleksandrowicz and G. Barequet, Parallel enumeration of lattice animals, Proc. 5th Int. Frontiers of Algorithmics Workshop, Zhejiang, China, Lecture Notes in Computer Science, 6681, Springer-Verlag, 90-99, May 2011.
  • Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016, http://www.csun.edu/~ctoth/Handbook/chap14.pdf
  • R. Barequet, G. Barequet, and G. Rote, Formulae and growth rates of high-dimensional polycubes, Combinatorica, 30 (2010), 257-275.
  • S. Luther and S. Mertens, Counting lattice animals in high dimensions, Journal of Statistical Mechanics: Theory and Experiment, 2011 (9), 546-565.

Crossrefs

Extensions

a(16) from Luther and Mertens by Gill Barequet, Jun 12 2011

A366334 Number of free (4,2)-polyominoids with n cells.

Original entry on oeis.org

1, 2, 12, 95, 1267, 22349
Offset: 1

Views

Author

Pontus von Brömssen, Oct 07 2023

Keywords

Comments

A (D,d)-polyominoid is a connected set of d-dimensional unit cubes with integer coordinates in D-dimensional space, where two cubes are connected if they share a (d-1)-dimensional facet. For example, (3,2)-polyominoids are normal polyominoids (A075679), (D,D)-polyominoids are D-dimensional polyominoes (A000105, A038119, A068870, ...), and (D,1)-polyominoids are polysticks in D dimensions (A019988, A365559, A365561, ...).

Crossrefs

46th row of A366766.
Cf. A366335 (fixed).
Free (D,d)-polyominoids:
D\d| 1 2 3 4
---+--------------------------------
1 | A000012

A330891 Triangle read by rows: cumulative sums of the rows of A049430.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 5, 7, 0, 1, 12, 23, 26, 0, 1, 35, 112, 147, 153, 0, 1, 108, 607, 1019, 1123, 1134, 0, 1, 369, 3811, 8699, 10708, 11027, 11050, 0, 1, 1285, 25413, 82535, 119120, 127989, 128940, 128987, 0, 1, 4655, 178083, 846042, 1493722, 1725296
Offset: 1

Views

Author

Peter Kagey, Apr 30 2020

Keywords

Comments

T(n,k) is also the number of n-celled polyominoes made up of k-dimensional cubes, counted up to rotation, reflection, and translation.

Examples

			Table begins:
n/k| 0 1    2     3     4      5      6      7      8
---+-------------------------------------------------
  1| 1
  2| 0 1
  3| 0 1    2
  4| 0 1    5     7
  5| 0 1   12    23    26
  6| 0 1   35   112   147    153
  7| 0 1  108   607  1019   1123   1134
  8| 0 1  369  3811  8699  10708  11027  11050
  9| 0 1 1285 25413 82535 119120 127989 128940 128987
		

Crossrefs

Columns 2-4: A000105, A038119, A068870.
Main diagonal is A005519.

Formula

T(n,k) = Sum_{i=0..k} A049430(n,i).

A255487 Number of polyhypercubes or 4-dimensional polyominoes with n cells (regarding mirror-images as distinct).

Original entry on oeis.org

1, 1, 1, 2, 7, 27, 164, 1316, 12757, 134174, 1474341, 16588434
Offset: 0

Views

Author

N. J. A. Sloane, Mar 01 2015

Keywords

References

  • Don Reble, Personal communication, Feb 25 2015

Crossrefs

Formula

a(n) = A006760(n) + A006765(n) + A006766(n) + signum(n-1) for n >= 1. - Sean A. Irvine, Jul 19 2017

A365140 List of free 4-dimensional polyhypercubes in binary code (see A365139), ordered first by the number of cells, then by the value of the binary code.

Original entry on oeis.org

1, 3, 7, 35, 15, 39, 71, 75, 99, 102, 32803, 31, 47, 79, 91, 103, 107, 167, 230, 333, 355, 358, 391, 454, 2567, 32807, 32867, 32870, 65575, 65579, 65733, 65734, 65764, 65862, 65866, 196678, 34359771171, 63, 95, 111, 123, 175, 231, 335, 343, 349, 359, 366, 371
Offset: 1

Views

Author

Pontus von Brömssen, Aug 23 2023

Keywords

Comments

Can be read as an irregular triangle, whose n-th row contains A068870(n) terms.

Examples

			As an irregular triangle:
  1;
  3;
  7, 35;
  15, 39, 71, 75, 99, 102, 32803;
  ...
		

Crossrefs

Cf. A068870, A246521 (2 dimensions), A365139 (3 dimensions), A365141 (5 dimensions).

A365353 Number of free corner-connected 4-dimensional polyhypercubes with n cells.

Original entry on oeis.org

1, 1, 4, 23, 207, 2794
Offset: 1

Views

Author

Pontus von Brömssen, Sep 02 2023

Keywords

Crossrefs

147th row of A366766.
See A365366 for a table of similar sequences.

A365354 Number of free edge-connected 4-dimensional polyhypercubes with n cells.

Original entry on oeis.org

1, 1, 6, 84, 2363
Offset: 1

Views

Author

Pontus von Brömssen, Sep 02 2023

Keywords

Crossrefs

143rd row of A366766.
See A365366 for a table of similar sequences.
Showing 1-10 of 22 results. Next