cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069039 Expansion of g.f. x*(1+x)^5/(1-x)^7.

Original entry on oeis.org

0, 1, 12, 73, 304, 985, 2668, 6321, 13504, 26577, 48940, 85305, 142000, 227305, 351820, 528865, 774912, 1110049, 1558476, 2149033, 2915760, 3898489, 5143468, 6704017, 8641216, 11024625, 13933036, 17455257, 21690928, 26751369, 32760460, 39855553, 48188416, 57926209
Offset: 0

Views

Author

Vladeta Jovovic, Apr 03 2002

Keywords

Comments

Figurate numbers based on the 6-dimensional regular convex polytope called the 6-dimensional cross-polytope, or 6-dimensional hyperoctahedron, which is represented by the Schlaefli symbol {3, 3, 3, 3, 4}. It is the dual of the 6-dimensional hypercube. Kim asserts that every nonnegative integer can be represented by the sum of no more than 19 of these 6-crosspolytope numbers. - Jonathan Vos Post, Nov 16 2004
Starting with 1 = binomial transform of [1, 11, 50, 120, 160, 112, 32, 0, 0, 0, ...] where (1, 11, 50, 120, 160, 112, 32) = row 6 of the Chebyshev triangle A081277. Also = row 6 of the array in A142978. - Gary W. Adamson, Jul 19 2008

References

  • H. S. M. Coxeter, Regular Polytopes, New York: Dover, 1973.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 240.
  • Jonathan Vos Post, "4-Dimensional Jonathan numbers: polytope numbers and Centered polytope numbers of Higher Than 3 Dimensions", Draft 1.5 of 9 a.m., 12 March 2004, circulated by e-mail.

Crossrefs

Similar sequence: A005900 (m=3), A014820(n-1) (m=4), A069038 (m=5), A099193 (m=7), A099195 (m=8), A099196 (m=9), A099197 (m=10).
Cf. A000332.

Programs

  • Maple
    al:=proc(s,n) binomial(n+s-1,s); end; be:=proc(d,n) local r; add( (-1)^r*binomial(d-1,r)*2^(d-1-r)*al(d-r,n), r=0..d-1); end; [seq(be(6,n),n=0..100)];
  • Mathematica
    a[n_] := n^2*(2*n^4 + 20*n^2 + 23)/45; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 29 2014 *)
    CoefficientList[Series[x (1+x)^5/(1-x)^7,{x,0,40}],x] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{0,1,12,73,304,985,2668},40] (* Harvey P. Dale, Aug 05 2018 *)
  • PARI
    x='x+O('x^100); concat(0, Vec(x*(1+x)^5/(1-x)^7)) \\ Altug Alkan, Dec 14 2015

Formula

Recurrence: a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
a(n) = (n^2)*(2*n^4 + 20*n^2 + 23 )/45. - Jonathan Vos Post, Nov 16 2004
From Stephen Crowley, Jul 14 2009: (Start)
Sum_{n >= 1} 1/a(n) = -5*(Sum(_alpha*(77*_alpha^2+655)*Psi(1-_alpha), _alpha = RootOf(2*_Z^4+20*_Z^2+23)))*(1/3174)+15*Pi^2*(1/46)=1.10203455013915915542552577192042916250524...
Sum_{n>=1} 1/(a(n)*n!) = hypergeom([1, 1, 1, 1-a, 1+b, 1-b, 1+a], [2, 2, 2, 2+b, 2-b, 2+a, 2-a], 1) = 1.04409584723862654376639417281585634150689... where a = (i/2)*sqrt(20+6*sqrt(6)), b = (i/2)*sqrt(20-6*sqrt(6)), and i = sqrt(-1). (End)
a(n) = 12*a(n-1)/(n-1) + a(n-2) for n > 1. - Seiichi Manyama, Jun 06 2018
E.g.f.: exp(x)*x*(45 + 225*x + 300*x^2 + 150*x^3 + 30*x^4 + 2*x^5)/45. - Stefano Spezia, Mar 10 2024