A069039 Expansion of g.f. x*(1+x)^5/(1-x)^7.
0, 1, 12, 73, 304, 985, 2668, 6321, 13504, 26577, 48940, 85305, 142000, 227305, 351820, 528865, 774912, 1110049, 1558476, 2149033, 2915760, 3898489, 5143468, 6704017, 8641216, 11024625, 13933036, 17455257, 21690928, 26751369, 32760460, 39855553, 48188416, 57926209
Offset: 0
References
- H. S. M. Coxeter, Regular Polytopes, New York: Dover, 1973.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 240.
- Jonathan Vos Post, "4-Dimensional Jonathan numbers: polytope numbers and Centered polytope numbers of Higher Than 3 Dimensions", Draft 1.5 of 9 a.m., 12 March 2004, circulated by e-mail.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- Milan Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
- Jonathan Vos Post, Table of polytope numbers, Sorted, Through 1,000,000.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Crossrefs
Programs
-
Maple
al:=proc(s,n) binomial(n+s-1,s); end; be:=proc(d,n) local r; add( (-1)^r*binomial(d-1,r)*2^(d-1-r)*al(d-r,n), r=0..d-1); end; [seq(be(6,n),n=0..100)];
-
Mathematica
a[n_] := n^2*(2*n^4 + 20*n^2 + 23)/45; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 29 2014 *) CoefficientList[Series[x (1+x)^5/(1-x)^7,{x,0,40}],x] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{0,1,12,73,304,985,2668},40] (* Harvey P. Dale, Aug 05 2018 *)
-
PARI
x='x+O('x^100); concat(0, Vec(x*(1+x)^5/(1-x)^7)) \\ Altug Alkan, Dec 14 2015
Formula
Recurrence: a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
a(n) = (n^2)*(2*n^4 + 20*n^2 + 23 )/45. - Jonathan Vos Post, Nov 16 2004
From Stephen Crowley, Jul 14 2009: (Start)
Sum_{n >= 1} 1/a(n) = -5*(Sum(_alpha*(77*_alpha^2+655)*Psi(1-_alpha), _alpha = RootOf(2*_Z^4+20*_Z^2+23)))*(1/3174)+15*Pi^2*(1/46)=1.10203455013915915542552577192042916250524...
Sum_{n>=1} 1/(a(n)*n!) = hypergeom([1, 1, 1, 1-a, 1+b, 1-b, 1+a], [2, 2, 2, 2+b, 2-b, 2+a, 2-a], 1) = 1.04409584723862654376639417281585634150689... where a = (i/2)*sqrt(20+6*sqrt(6)), b = (i/2)*sqrt(20-6*sqrt(6)), and i = sqrt(-1). (End)
a(n) = 12*a(n-1)/(n-1) + a(n-2) for n > 1. - Seiichi Manyama, Jun 06 2018
E.g.f.: exp(x)*x*(45 + 225*x + 300*x^2 + 150*x^3 + 30*x^4 + 2*x^5)/45. - Stefano Spezia, Mar 10 2024
Comments