A069074 a(n) = (2*n+2)*(2*n+3)*(2*n+4) = 24*A000330(n+1).
24, 120, 336, 720, 1320, 2184, 3360, 4896, 6840, 9240, 12144, 15600, 19656, 24360, 29760, 35904, 42840, 50616, 59280, 68880, 79464, 91080, 103776, 117600, 132600, 148824, 166320, 185136, 205320, 226920, 249984, 274560, 300696, 328440, 357840
Offset: 0
References
- Albert H. Beiler, Recreations in the theory of numbers, New York: Dover, (2nd ed.) 1966, p. 106, table 53.
- T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 190.
- Jolley, Summation of Series, Dover (1961).
- Konrad Knopp, Theory and application of infinite series, Dover, p. 269
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Konrad Knopp, Theorie und Anwendung der unendlichen Reihen, Berlin, J. Springer, 1922. (Original german edition of "Theory and Application of Infinite Series")
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[(2*n+2)*(2*n+3)*(2*n+4): n in [0..40]]; // Vincenzo Librandi, Oct 04 2011
-
Mathematica
LinearRecurrence[{4,-6,4,-1},{24,120,336,720},40] (* Harvey P. Dale, Apr 10 2017 *)
-
PARI
a(n)=6*binomial(2*n+4,3) \\ Charles R Greathouse IV, Mar 21 2015
Formula
Sum_{n>=0} (-1)^n/a(n) = (Pi-3)/4 = 0.03539816339... [Jolley, eq. 244]
Sum_{n>=0} 1/a(n) = 3/4 - log(2) = 0.05685281... [Jolley, eq. 249]
G.f.: ( 24+24*x ) / (x-1)^4. - R. J. Mathar, Oct 03 2011
Comments