cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069097 Moebius transform of A064987, n*sigma(n).

Original entry on oeis.org

1, 5, 11, 22, 29, 55, 55, 92, 105, 145, 131, 242, 181, 275, 319, 376, 305, 525, 379, 638, 605, 655, 551, 1012, 745, 905, 963, 1210, 869, 1595, 991, 1520, 1441, 1525, 1595, 2310, 1405, 1895, 1991, 2668, 1721, 3025, 1891, 2882, 3045, 2755, 2255, 4136, 2737
Offset: 1

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Comments

Equals A127569 * [1, 2, 3, ...]. - Gary W. Adamson, Jan 19 2007
Equals row sums of triangle A143309 and of triangle A143312. - Gary W. Adamson, Aug 06 2008
Dirichlet convolution of A000290 and A000010 (see Jovovic formula). - R. J. Mathar, Feb 03 2011

Crossrefs

Column 2 of A343510.
For Sum_{k = 1..n} gcd(k,n)^m see A018804 (m = 1), A343497 (m = 3), A343498 (m = 4) and A343499 (m = 5).

Programs

  • Mathematica
    A069097[n_]:=n^2*Plus @@((EulerPhi[#]/#^2)&/@ Divisors[n]); Array[A069097, 100] (* Enrique Pérez Herrero, Feb 25 2012 *)
    f[p_, e_] := p^(e-1)*(p^e*(p+1)-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2020 *)
  • PARI
    for(n=1,100,print1((sumdiv(n,k,k*sigma(k)*moebius(n/k))),","))

Formula

a(n) = Sum_{d|n} d^2*phi(n/d). - Vladeta Jovovic, Jul 31 2002
a(n) = Sum_{k=1..n} gcd(n, k)^2. - Vladeta Jovovic, Aug 27 2003
Dirichlet g.f.: zeta(s-2)*zeta(s-1)/zeta(s). - R. J. Mathar, Feb 03 2011
a(n) = n*Sum_{d|n} J_2(d)/d, where J_2 is A007434. - Enrique Pérez Herrero, Feb 25 2012.
G.f.: Sum_{n >= 1} phi(n)*(x^n + x^(2*n))/(1 - x^n)^3 = x + 5*x^2 + 11*x^3 + 22*x^4 + .... - Peter Bala, Dec 30 2013
Multiplicative with a(p^e) = p^(e-1)*(p^e*(p+1)-1). - R. J. Mathar, Jun 23 2018
Sum_{k=1..n} a(k) ~ Pi^2 * n^3 / (18*zeta(3)). - Vaclav Kotesovec, Sep 18 2020
a(n) = Sum_{k=1..n} (n/gcd(n,k))^2*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
From Peter Bala, Dec 26 2023: (Start)
For n odd, a(n) = Sum_{k = 1..n} gcd(k,n)/cos(k*Pi/n)^2 (see Osipov and also Chu, p. 51).
It appears that for n odd, Sum_{k = 1..n} (-1)^(k+1)*gcd(k,n)/cos(k*Pi/n)^2 = n. (End)
a(n) = Sum_{1 <= i, j <= n} gcd(i, j, n). Cf. A360428. - Peter Bala, Jan 16 2024
Sum_{k=1..n} a(k)/k ~ Pi^2 * n^2 / (12*zeta(3)). - Vaclav Kotesovec, May 11 2024