cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069107 Composite numbers k that divide Fibonacci(k+1).

Original entry on oeis.org

323, 377, 2834, 3827, 5777, 6479, 10877, 11663, 18407, 19043, 20999, 23407, 25877, 27323, 34943, 35207, 39203, 44099, 47519, 50183, 51983, 53663, 60377, 65471, 75077, 78089, 79547, 80189, 81719, 82983, 84279, 84419, 86063, 90287, 94667
Offset: 1

Views

Author

Benoit Cloitre, Apr 06 2002

Keywords

Comments

Primes p congruent to +2 or -2 (mod 5) divide Fibonacci(p+1) (cf. A003631 and [Hardy and Wright]).

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers (Fifth edition), Oxford Univ. Press (Clarendon), 1979, Chap. X, p. 150.

Crossrefs

Cf. A045468, A003631, A064739, A081264 (Fibonacci pseudoprimes).

Programs

  • Haskell
    a069107 n = a069107_list !! (n-1)
    a069107_list = h 2 $ drop 3 a000045_list where
       h n (fib:fibs) = if fib `mod` n > 0 || a010051 n == 1
           then h (n+1) fibs else n : h (n+1) fibs
    -- Reinhard Zumkeller, Oct 13 2011
    
  • Mathematica
    Select[Range[2,100000],!PrimeQ[#]&&Divisible[Fibonacci[#+1],#]&] (* Harvey P. Dale, Sep 18 2011 *)
  • PARI
    is(n)=((Mod([1,1;1,0],n))^(n+1))[1,2]==0 && !isprime(n) && n>1 \\ Charles R Greathouse IV, Oct 07 2016

Formula

Fibonacci(2*a(n)) mod a(n) = a(n) - 1. - Gary Detlefs, May 26 2014

Extensions

Corrected by Ralf Stephan, Oct 17 2002