A069107 Composite numbers k that divide Fibonacci(k+1).
323, 377, 2834, 3827, 5777, 6479, 10877, 11663, 18407, 19043, 20999, 23407, 25877, 27323, 34943, 35207, 39203, 44099, 47519, 50183, 51983, 53663, 60377, 65471, 75077, 78089, 79547, 80189, 81719, 82983, 84279, 84419, 86063, 90287, 94667
Offset: 1
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers (Fifth edition), Oxford Univ. Press (Clarendon), 1979, Chap. X, p. 150.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..2000 (n = 1..250 from Reinhard Zumkeller, n = 251..1000 from Giovanni Resta)
Crossrefs
Programs
-
Haskell
a069107 n = a069107_list !! (n-1) a069107_list = h 2 $ drop 3 a000045_list where h n (fib:fibs) = if fib `mod` n > 0 || a010051 n == 1 then h (n+1) fibs else n : h (n+1) fibs -- Reinhard Zumkeller, Oct 13 2011
-
Mathematica
Select[Range[2,100000],!PrimeQ[#]&&Divisible[Fibonacci[#+1],#]&] (* Harvey P. Dale, Sep 18 2011 *)
-
PARI
is(n)=((Mod([1,1;1,0],n))^(n+1))[1,2]==0 && !isprime(n) && n>1 \\ Charles R Greathouse IV, Oct 07 2016
Formula
Fibonacci(2*a(n)) mod a(n) = a(n) - 1. - Gary Detlefs, May 26 2014
Extensions
Corrected by Ralf Stephan, Oct 17 2002
Comments