A069127 Centered 14-gonal numbers.
1, 15, 43, 85, 141, 211, 295, 393, 505, 631, 771, 925, 1093, 1275, 1471, 1681, 1905, 2143, 2395, 2661, 2941, 3235, 3543, 3865, 4201, 4551, 4915, 5293, 5685, 6091, 6511, 6945, 7393, 7855, 8331, 8821, 9325, 9843, 10375, 10921, 11481, 12055, 12643, 13245, 13861, 14491
Offset: 1
Examples
a(5) = 141 because 7*5^2 - 7*5 + 1 = 175 - 35 + 1 = 141. a(5) = 71 because 71 = (7*5^2 - 7*5 + 2)/2 = (175 - 35 + 2)/2 = 142/2. From _Bruno Berselli_, Oct 27 2017: (Start) 1 = -(1) + (2). 15 = -(1+2) + (3+4+5+6). 43 = -(1+2+3) + (4+5+6+7+8+9+10). 85 = -(1+2+3+4) + (5+6+7+8+9+10+11+12+13+14). 141 = -(1+2+3+4+5) + (6+7+8+9+10+11+12+13+14+15+16+17+18). (End)
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Leo Tavares, Illustration: Heptagonal Stars.
- Eric Weisstein's World of Mathematics, Centered Polygonal Numbers.
- R. Yin, J. Mu, and T. Komatsu, The p-Frobenius Number for the Triple of the Generalized Star Numbers, Preprints 2024, 2024072280. See p. 2.
- Index entries for sequences related to centered polygonal numbers.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
FoldList[#1 + #2 &, 1, 14 Range@ 45] (* Robert G. Wilson v, Feb 02 2011 *) Accumulate[14*Range[0,50]]+1 (* Harvey P. Dale, Apr 09 2012 *)
-
PARI
a(n)=7*n^2-7*n+1 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = 7*n^2 - 7*n + 1.
a(n) = 14*n+a(n-1)-14 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
G.f.: -x*(1+12*x+x^2) / (x-1)^3. - R. J. Mathar, Feb 04 2011
a(n) = A163756(n-1) + 1. - Omar E. Pol, Oct 03 2011
Sum_{n>=1} 1/a(n) = Pi * tan(sqrt(3/7)*Pi/2) / sqrt(21). - Vaclav Kotesovec, Jul 23 2019
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} a(n)/n! = 8*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 8/e - 1. (End)
E.g.f.: exp(x)*(1 + 7*x^2) - 1. - Stefano Spezia, Aug 01 2024
Comments