cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069130 Centered 17-gonal numbers: (17*n^2 - 17*n + 2)/2.

Original entry on oeis.org

1, 18, 52, 103, 171, 256, 358, 477, 613, 766, 936, 1123, 1327, 1548, 1786, 2041, 2313, 2602, 2908, 3231, 3571, 3928, 4302, 4693, 5101, 5526, 5968, 6427, 6903, 7396, 7906, 8433, 8977, 9538, 10116, 10711, 11323, 11952, 12598, 13261, 13941, 14638, 15352
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 07 2002

Keywords

Comments

Equals binomial transform of [1, 17, 17, 0, 0, 0, ...]. - Gary W. Adamson, Mar 26 2010

Examples

			a(5) = 171 because (17*5^2 - 17*5 + 2)/2 = (425 - 85 + 2)/2 = 342/2 = 171.
		

Crossrefs

Cf. centered polygonal numbers listed in A069190.

Programs

Formula

a(n) = (17*n^2 - 17*n + 2)/2.
a(n) = 17*n + a(n-1) - 17 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
G.f.: x*(1+15*x+x^2) / (1-x)^3. - R. J. Mathar, Feb 04 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=18, a(2)=52. - Harvey P. Dale, Jun 05 2011
Narayana transform (A001263) of [1, 17, 0, 0, 0, ...]. - Gary W. Adamson, Jul 28 2011
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = 2*Pi*tan(3*Pi/(2*sqrt(17)))/(3*sqrt(17)).
Sum_{n>=1} a(n)/n! = 19*e/2 - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 19/(2*e) - 1. (End)
E.g.f.: exp(x)*(1 + 17*x^2/2) - 1. - Stefano Spezia, May 31 2022

Extensions

Typo in formula fixed by Omar E. Pol, Dec 22 2008