A069264 Inverse Moebius transform of bigomega(n).
0, 1, 1, 3, 1, 4, 1, 6, 3, 4, 1, 9, 1, 4, 4, 10, 1, 9, 1, 9, 4, 4, 1, 16, 3, 4, 6, 9, 1, 12, 1, 15, 4, 4, 4, 18, 1, 4, 4, 16, 1, 12, 1, 9, 9, 4, 1, 25, 3, 9, 4, 9, 1, 16, 4, 16, 4, 4, 1, 24, 1, 4, 9, 21, 4, 12, 1, 9, 4, 12, 1, 30, 1, 4, 9, 9, 4, 12, 1, 25, 10, 4, 1, 24, 4, 4, 4, 16, 1, 24, 4, 9, 4, 4
Offset: 1
Examples
a(12)=9 because the divisors of 12 are: 1,2,3,4,6,12 and the number (with multiplicity) of prime factors of these divisors is: 0+1+1+2+2+3=9. - _Geoffrey Critzer_, Feb 03 2015
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[Sum[PrimeOmega[d], {d, Divisors[n]}], {n, 1, 94}] (* Geoffrey Critzer, Feb 03 2015 *)
-
PARI
for(n=1,120,print1(sumdiv(n,d,bigomega(d)),","))
Formula
a(n) = tau(n)*bigomega(n)/2. - Vladeta Jovovic, Jan 25 2004
G.f.: Sum_{k>=1} bigomega(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Feb 19 2017
Comments