cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A007955 Product of divisors of n.

Original entry on oeis.org

1, 2, 3, 8, 5, 36, 7, 64, 27, 100, 11, 1728, 13, 196, 225, 1024, 17, 5832, 19, 8000, 441, 484, 23, 331776, 125, 676, 729, 21952, 29, 810000, 31, 32768, 1089, 1156, 1225, 10077696, 37, 1444, 1521, 2560000, 41, 3111696, 43, 85184, 91125, 2116, 47, 254803968, 343
Offset: 1

Views

Author

R. Muller

Keywords

Comments

All terms of this sequence occur only once. See the second T. D. Noe link for a proof. - T. D. Noe, Jul 07 2008
Every natural number has a unique representation in terms of divisor products. See the W. Lang link. - Wolfdieter Lang, Feb 08 2011
a(n) = n only if n is prime or 1 (or, if n is in A008578). - Alonso del Arte, Apr 18 2011
Sometimes called the "divisorial" of n. - Daniel Forgues, Aug 03 2012
a(n) divides EulerPhi(x^n-y^n) (see A. Rotkiewicz link). - Michel Marcus, Dec 15 2012
The proof that all the terms of this sequence occur only once (mentioned above) was given by Niven in 1984. - Amiram Eldar, Aug 16 2020

Examples

			Divisors of 10 = [1, 2, 5, 10]. So, a(10) = 2*5*10 = 100. - _Indranil Ghosh_, Mar 22 2017
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 1, p. 57.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 83.

Crossrefs

Cf. A000203 (sums of divisors).
Cf. A000010 (comments on product formulas).

Programs

  • GAP
    List(List([1..50],n->DivisorsInt(n)),Product); # Muniru A Asiru, Feb 17 2019
  • Haskell
    a007955 = product . a027750_row  -- Reinhard Zumkeller, Feb 06 2012
    
  • Magma
    f := function(n); t1 := &*[d : d in Divisors(n) ]; return t1; end function;
    
  • Maple
    A007955 := proc(n) mul(d,d=numtheory[divisors](n)) ; end proc: # R. J. Mathar, Mar 17 2011
    seq(isqrt(n^numtheory[tau](n)), n=1..50); # Gary Detlefs, Feb 15 2019
  • Mathematica
    Array [ Times @@ Divisors[ # ]&, 100 ]
    a[n_] := n^(DivisorSigma[0, n]/2); Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 21 2013 *)
  • PARI
    a(n)=if(issquare(n,&n),n^numdiv(n^2),n^(numdiv(n)/2)) \\ Charles R Greathouse IV, Feb 11 2011
    
  • Python
    from sympy import prod, divisors
    print([prod(divisors(n)) for n in range(1, 51)]) # Indranil Ghosh, Mar 22 2017
    
  • Python
    from math import isqrt
    from sympy import divisor_count
    def A007955(n):
        d = divisor_count(n)
        return isqrt(n)**d if d % 2 else n**(d//2) # Chai Wah Wu, Jan 05 2022
    
  • Sage
    [prod(divisors(n)) for n in (1..100)] # Giuseppe Coppoletta, Dec 16 2014
    
  • Sage
    [n^(sigma(n,0)/2) for n in (1..49)] # Stefano Spezia, Jul 14 2025
    
  • Scheme
    ;; A naive stand-alone implementation:
    (define (A007955 n) (let loop ((d n) (m 1)) (cond ((zero? d) m) ((zero? (modulo n d)) (loop (- d 1) (* m d))) (else (loop (- d 1) m)))))
    ;; Faster, if A000005 and A000196 are available:
    (define (A007955 n) (A000196 (expt n (A000005 n))))
    ;; Antti Karttunen, Mar 22 2017
    

Formula

a(n) = n^(d(n)/2) = n^(A000005(n)/2). Since a(n) = Product_(d|n) d = Product_(d|n) n/d, we have a(n)*a(n) = Product_(d|n) d*(n/d) = Product_(d|n) n = n^(tau(n)), whence a(n) = n^(tau(n)/2).
a(p^k) = p^A000217(k). - Enrique Pérez Herrero, Jul 22 2011
a(n) = A078599(n) * A178649(n). - Reinhard Zumkeller, Feb 06 2012
a(n) = A240694(n, A000005(n)). - Reinhard Zumkeller, Apr 10 2014
From Antti Karttunen, Mar 22 2017: (Start)
a(n) = A000196(n^A000005(n)). [From the original formula.]
A001222(a(n)) = A069264(n). [See Geoffrey Critzer's Feb 03 2015 comment in the latter sequence.]
A046523(a(n)) = A283995(n).
(End)
a(n) = Product_{k=1..n} gcd(n,k)^(1/phi(n/gcd(n,k))) = Product_{k=1..n} (n/gcd(n,k))^(1/phi(n/gcd(n,k))) where phi = A000010. - Richard L. Ollerton, Nov 07 2021
From Bernard Schott, Jan 11 2022: (Start)
a(n) = n^2 iff n is in A007422.
a(n) = n^3 iff n is in A162947.
a(n) = n^4 iff n is in A111398.
a(n) = n^5 iff n is in A030628.
a(n) = n^(3/2) iff n is in A280076. (End)
From Amiram Eldar, Oct 29 2022: (Start)
a(n) = n * A007956(n).
Sum_{k=1..n} 1/a(k) ~ log(log(n)) + c + O(1/log(n)), where c is a constant (Weiyi, 2004; Sandor and Crstici, 2004). (End)
a(n) = Product_{k=1..n} (n * (1 - ceiling(n/k - floor(n/k))))/k + ceiling(n/k - floor(n/k)). - Adriano Steffler, Feb 08 2024

A318366 a(n) = Sum_{d|n} bigomega(d)*bigomega(n/d).

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 4, 1, 2, 0, 8, 0, 2, 2, 10, 0, 8, 0, 8, 2, 2, 0, 20, 1, 2, 4, 8, 0, 12, 0, 20, 2, 2, 2, 24, 0, 2, 2, 20, 0, 12, 0, 8, 8, 2, 0, 40, 1, 8, 2, 8, 0, 20, 2, 20, 2, 2, 0, 34, 0, 2, 8, 35, 2, 12, 0, 8, 2, 12, 0, 52, 0, 2, 8, 8, 2, 12, 0, 40, 10, 2, 0, 34, 2, 2, 2, 20, 0, 34, 2, 8, 2, 2, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 24 2018

Keywords

Comments

Dirichlet convolution of A001222 with itself.

Examples

			24 has 8 divisors, namely 1, 2, 3, 4, 6, 8, 12, 24, and four prime factors counted with multiplicity. The divisors have 0, 1, 1, 2, 2, 3, 3, 4 divisors respectively. So a(24) = 0 * (4 - 0) + 1 * (4 - 1) + 1 * (4 - 1) + 2 * (4 - 2) + 2 * (4 - 2) + 3 * (4 - 3) + 4 * (4 - 4) = 0 + 3 + 3 + 4 + 4 + 3 + 3 + 0 = 20. - _David A. Corneth_, Jan 12 2019
		

Crossrefs

Cf. A000005, A001222, A008578 (positions of 0's), A069264, A070288, A112967, A317938, A322375.

Programs

  • Maple
    f:= proc(n) local F,G,t,x;
       F:= map(t -> t[2], ifactors(n)[2]);
       G:= unapply(normal(mul((1-x^(t+1))/(1-x), t = F)),x);
      (convert(F,`+`)-1)*D(G)(1) - (D@@2)(G)(1);
    end proc:
    map(f, [$1..100]); # Robert Israel, Jan 17 2019
  • Mathematica
    Table[Sum[PrimeOmega[d] PrimeOmega[n/d], {d, Divisors[n]}], {n, 95}]
  • PARI
    a(n) = sumdiv(n, d, bigomega(d)*bigomega(n/d)); \\ Michel Marcus, Aug 25 2018
    
  • PARI
    a(n) = bn = bigomega(n); sumdiv(n, d, bd = bigomega(d); bd * (bn - bd)) \\ David A. Corneth, Jan 12 2019

Formula

a(A025487(n)) = A322375(n). - David A. Corneth, Jan 12 2019
From Robert Israel, Jan 17 2019: (Start)
If x and y are coprime, a(x*y) = a(x)*A000005(y) + A000005(x)*a(y) + A000005(x*y)*A001222(x)*A001222(y).
If p is prime, a(p^k) = (k^3-k)/6 = A000292(k-1). (End)

A283995 Least number with same prime signature as the n-th divisorial: a(n) = A046523(A007955(n)).

Original entry on oeis.org

1, 2, 2, 8, 2, 36, 2, 64, 8, 36, 2, 1728, 2, 36, 36, 1024, 2, 1728, 2, 1728, 36, 36, 2, 331776, 8, 36, 64, 1728, 2, 810000, 2, 32768, 36, 36, 36, 10077696, 2, 36, 36, 331776, 2, 810000, 2, 1728, 1728, 36, 2, 254803968, 8, 1728, 36, 1728, 2, 331776, 36, 331776, 36, 36, 2, 46656000000, 2, 36, 1728, 2097152, 36, 810000, 2, 1728, 36, 810000, 2, 139314069504, 2, 36
Offset: 1

Views

Author

Antti Karttunen, Mar 22 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[If[n == 1, 1, Times @@ MapIndexed[Prime[First@ #2]^#1 &, FactorInteger[Times @@ Divisors@ n][[All, -1]]]], {n, 74}] (* Michael De Vlieger, Mar 22 2017 *)
  • PARI
    A007955(n) = if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2)); \\ From Charles R Greathouse IV, Feb 11 2011
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From Charles R Greathouse IV, Aug 17 2011
    A283995(n) = A046523(A007955(n));
    
  • Python
    from math import prod, isqrt
    from sympy import prime, factorint, divisor_count
    def A283995(n): return (lambda n:prod(prime(i+1)**e for i, e in enumerate(sorted(factorint(n).values(), reverse=True))))((isqrt(n) if (c:=divisor_count(n)) & 1 else 1)*n**(c//2)) # Chai Wah Wu, Jun 25 2022
  • Scheme
    (define (A283995 n) (A046523 (A007955 n)))
    

Formula

a(n) = A046523(A007955(n)).

A330018 a(n) = Sum_{d|n} (bigomega(d) - omega(d)).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 3, 1, 0, 0, 2, 0, 0, 0, 6, 0, 2, 0, 2, 0, 0, 0, 6, 1, 0, 3, 2, 0, 0, 0, 10, 0, 0, 0, 6, 0, 0, 0, 6, 0, 0, 0, 2, 2, 0, 0, 12, 1, 2, 0, 2, 0, 6, 0, 6, 0, 0, 0, 4, 0, 0, 2, 15, 0, 0, 0, 2, 0, 0, 0, 13, 0, 0, 2, 2, 0, 0, 0, 12, 6, 0, 0, 4, 0, 0, 0, 6, 0, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 27 2019

Keywords

Comments

Inverse Moebius transform of A046660.

Crossrefs

Cf. A001221, A001222, A005117 (positions of 0's), A046660, A062799, A069264, A268340.

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    V:= Vector(N):
    for d from 1 to N do
      v:= add(t[2]-1, t=ifactors(d)[2]);
      L:= [seq(i,i=d..N,d)]:
      V[L]:= map(`+`,V[L],v);
    od:
    convert(V,list); # Robert Israel, Jun 12 2020
  • Mathematica
    a[n_] := Sum[PrimeOmega[d] - PrimeNu[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 90}]
  • PARI
    a(n) = sumdiv(n, d, bigomega(d) - omega(d)); \\ Michel Marcus, Jun 12 2020

Formula

G.f.: Sum_{k>=1} A046660(k) * x^k / (1 - x^k).
a(n) = A069264(n) - A062799(n).
If m and n are coprime, a(m*n) = tau(m)*a(n) + tau(n)*a(m), where tau = A000005. - Robert Israel, Jun 12 2020
Showing 1-4 of 4 results.