cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A069460 Greatest prime factor of prime(n)^n - 1.

Original entry on oeis.org

2, 31, 5, 3221, 157, 25646167, 3833, 7792003, 732541, 150332843, 144061, 17615988547, 6177695707, 461017351, 31129845205681, 361353204962363828785531, 903870199, 751410597400064602523400427092397, 25058741, 153436090543, 1750258119644519
Offset: 2

Views

Author

Reinhard Zumkeller, Mar 24 2002

Keywords

Examples

			A000040(9)^9 - 1 = 23^9 - 1 = 1801152661462 = 2*7*11*19*79*7792003, therefore a(9) = 7792003.
		

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[Prime[n]^n-1][[-1,1]],{n,2,30}] (* Harvey P. Dale, May 19 2019 *)

Formula

a(n) = A006530(A069459(n)).

Extensions

More terms from Hugo Pfoertner, May 18 2004
Undefined a(1) removed by Hugo Pfoertner, Jul 22 2019

A191546 Smallest prime factor of prime(n)^n + 1 having the form 2*k*n+1.

Original entry on oeis.org

3, 5, 7, 1201, 13421, 28393, 22796593, 15073, 163, 421, 757241, 3512477579761, 79, 29, 24317675453761, 136593761, 21199857783625129028395239857, 37, 2494605276120959, 41, 43, 89, 691, 97, 488700001, 53, 17713, 4201, 59, 181, 2729, 449, 67, 137, 71
Offset: 1

Views

Author

Michel Lagneau, Jun 05 2011

Keywords

Examples

			a(4) = 1201 because prime(4)^4 + 1 = 7^4+1 = 2402 = 2*1201; the prime divisor of the form 2kn + 1 is 1201 = 2*150*4 + 1 with k = 150.
		

Crossrefs

Cf. A069463 (Greatest prime factor of prime(n)^n+1).

Programs

  • Maple
    A191546 := proc(n) local ifs,twkn ; ifs := sort(convert(numtheory[factorset]( 1+ithprime(n)^n),list)) ; for twkn in ifs do if (twkn-1) mod (2*n) = 0 then return twkn; end if; end do: return -1 ; end proc: # R. J. Mathar, Jun 18 2011
  • Mathematica
    Table[p = First /@ FactorInteger[Prime[n]^n + 1]; Select[p, Mod[#1, n] ==
      1 &, 1][[1]], {n, 1, 35}]
Showing 1-2 of 2 results.