cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A069459 a(n) = prime(n)^n - 1.

Original entry on oeis.org

1, 8, 124, 2400, 161050, 4826808, 410338672, 16983563040, 1801152661462, 420707233300200, 25408476896404830, 6582952005840035280, 925103102315013629320, 73885357344138503765448, 12063348350820368238715342, 3876269050118516845397872320, 1271991467017507741703714391418
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 24 2002

Keywords

Comments

a(n) = A062457(n) - 1.

Examples

			a(16) = A062457(n) - 1 = A000040(16)^16 - 1 = 53^16-1 =
= 3876269050118516845397872320 =
= 2^6*3^3*5*13*17*281*232073*31129845205681.
		

Crossrefs

Programs

  • Magma
    [NthPrime(n)^n - 1: n in [1..25]]; // G. C. Greubel, Apr 22 2018
  • Mathematica
    Table[Prime[n]^n - 1, {n, 1, 25}] (* G. C. Greubel, Apr 22 2018 *)
  • PARI
    for(n=1, 25, print1(prime(n)^n - 1, ", ")) \\ G. C. Greubel, Apr 22 2018
    

A069463 Greatest prime factor of prime(n)^n+1.

Original entry on oeis.org

3, 5, 7, 1201, 13421, 28393, 22796593, 563377, 1117, 470925821, 1048563011, 3512477579761, 644522798011, 22021301, 24317675453761, 14189041365214758401, 21199857783625129028395239857, 13842121, 292354984050175817, 613624820402521
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 24 2002

Keywords

Examples

			A000040(10)^10+1 = 29^10+1 = 420707233300202 = 2*421*1061*470925821, therefore a(10) = 470925821.
		

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[Prime[n]^n+1][[-1,1]],{n,20}] (* Harvey P. Dale, Aug 23 2019 *)

Formula

a(n) = A006530(A062006(n)).

Extensions

More terms from Hugo Pfoertner, May 21 2004

A191548 Smallest prime factor of prime(n)^n - 1 having the form k*n + 1.

Original entry on oeis.org

31, 5, 3221, 7, 25646167, 17, 19, 11, 23, 13, 11831, 5839, 31, 17, 137, 19, 751410597400064602523400427092397, 661, 127, 23, 47, 46644217, 101, 79, 2377, 29, 7193, 31, 1310825268269643509279336731098526398390609803239319801398048897, 97, 755569
Offset: 3

Views

Author

Michel Lagneau, Jun 05 2011

Keywords

Examples

			a(3) = 31 because prime(3)^3 - 1 = 5^3 - 1 = 124 = 2^2*31; the smallest prime divisor of the form k*n + 1 is 31 = 10*3 + 1 with k = 10.
		

Crossrefs

Cf. A069460 (greatest prime factor of prime(n)^n-1).

Programs

  • Mathematica
    Table[p = First /@ FactorInteger[Prime[n]^n - 1]; Select[p, Mod[#1, n] ==
      1 &, 1][[1]], {n, 3, 30}]
Showing 1-3 of 3 results.