A069482 a(n) = prime(n+1)^2 - prime(n)^2.
5, 16, 24, 72, 48, 120, 72, 168, 312, 120, 408, 312, 168, 360, 600, 672, 240, 768, 552, 288, 912, 648, 1032, 1488, 792, 408, 840, 432, 888, 3360, 1032, 1608, 552, 2880, 600, 1848, 1920, 1320, 2040, 2112, 720, 3720, 768, 1560, 792, 4920, 5208, 1800, 912, 1848
Offset: 1
Keywords
Examples
A000040(10)=29, A000040(10+1)=31, A001248(10)=841, A001248(10+1)=961, a(10) = 961 - 841 = 120, A069486(10) = 2*31*29 = 1798, A069484(10) = 961 + 841 = 1802: 120^2 + 1798^2 = 14400 + 3232804 = 3247204 = 1802^2.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Pythagorean Triple
Programs
-
Haskell
a069482 n = a069482_list !! (n-1) a069482_list = zipWith (-) (tail a001248_list) a001248_list -- Reinhard Zumkeller, Jun 08 2015
-
Magma
[NthPrime(n+1)^2 - NthPrime(n)^2: n in [1..40]]; // G. C. Greubel, May 19 2019
-
Mathematica
Table[Prime[n+1]^2 - Prime[n]^2, {n, 1, 40}] (* Vladimir Joseph Stephan Orlovsky, Mar 01 2009; modified by G. C. Greubel, May 19 2019 *) #[[2]]-#[[1]]&/@Partition[Prime[Range[60]]^2,2,1] (* Harvey P. Dale, Jan 13 2011 *) Differences[Prime[Range[100]]^2](* Waldemar Puszkarz, Feb 09 2015 *)
-
PARI
{a(n) = prime(n+1)^2 - prime(n)^2}; \\ G. C. Greubel, May 19 2019
-
Python
from sympy import prime, primerange def aupton(terms): p = list(primerange(1, prime(terms+1)+1)) return [p[n+1]**2-p[n]**2 for n in range(terms)] print(aupton(50)) # Michael S. Branicky, May 16 2021
-
Sage
[nth_prime(n+1)^2 - nth_prime(n)^2 for n in (1..40)] # G. C. Greubel, May 19 2019
Comments