cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069492 5-full numbers: if a prime p divides k then so does p^5.

Original entry on oeis.org

1, 32, 64, 128, 243, 256, 512, 729, 1024, 2048, 2187, 3125, 4096, 6561, 7776, 8192, 15552, 15625, 16384, 16807, 19683, 23328, 31104, 32768, 46656, 59049, 62208, 65536, 69984, 78125, 93312, 100000, 117649, 124416, 131072, 139968, 161051
Offset: 1

Views

Author

Benoit Cloitre, Apr 15 2002

Keywords

Comments

a(m) mod prime(n) > 0 for m < A258602(n); a(A258602(n)) = A050997(n) = prime(n)^5. - Reinhard Zumkeller, Jun 06 2015

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, fromList, union)
    a069492 n = a069492_list !! (n-1)
    a069492_list = 1 : f (singleton z) [1, z] zs where
       f s q5s p5s'@(p5:p5s)
         | m < p5 = m : f (union (fromList $ map (* m) ps) s') q5s p5s'
         | otherwise = f (union (fromList $ map (* p5) q5s) s) (p5:q5s) p5s
         where ps = a027748_row m
               (m, s') = deleteFindMin s
       (z:zs) = a050997_list
    -- Reinhard Zumkeller, Jun 03 2015
    
  • PARI
    for(n=1,250000,if(n*sumdiv(n,d,isprime(d)/d^5)==floor(n*sumdiv(n,d,isprime(d)/d^5)),print1(n,",")))
    
  • PARI
    \\ Gen(limit,k) defined in A036967.
    Gen(170000, 5) \\ Andrew Howroyd, Sep 10 2024
    
  • Python
    from math import gcd
    from sympy import integer_nthroot, factorint
    def A069492(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for t in range(1,integer_nthroot(x,9)[0]+1):
                if all(d<=1 for d in factorint(t).values()):
                    for u in range(1,integer_nthroot(s:=x//t**9,8)[0]+1):
                        if gcd(t,u)==1 and all(d<=1 for d in factorint(u).values()):
                            for w in range(1,integer_nthroot(a:=s//u**8,7)[0]+1):
                                if gcd(u,w)==1 and gcd(t,w)==1 and all(d<=1 for d in factorint(w).values()):
                                    for y in range(1,integer_nthroot(z:=a//w**7,6)[0]+1):
                                        if gcd(w,y)==1 and gcd(u,y)==1 and gcd(t,y)==1 and all(d<=1 for d in factorint(y).values()):
                                            c -= integer_nthroot(z//y**6,5)[0]
            return c
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^4*(p-1))) = 1.0695724994489739263413712783666538355049945684326048537289707764272637... - Amiram Eldar, Jul 09 2020