A069492 5-full numbers: if a prime p divides k then so does p^5.
1, 32, 64, 128, 243, 256, 512, 729, 1024, 2048, 2187, 3125, 4096, 6561, 7776, 8192, 15552, 15625, 16384, 16807, 19683, 23328, 31104, 32768, 46656, 59049, 62208, 65536, 69984, 78125, 93312, 100000, 117649, 124416, 131072, 139968, 161051
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 (terms n=148..10000 corrected by Andrew Howroyd)
Programs
-
Haskell
import Data.Set (singleton, deleteFindMin, fromList, union) a069492 n = a069492_list !! (n-1) a069492_list = 1 : f (singleton z) [1, z] zs where f s q5s p5s'@(p5:p5s) | m < p5 = m : f (union (fromList $ map (* m) ps) s') q5s p5s' | otherwise = f (union (fromList $ map (* p5) q5s) s) (p5:q5s) p5s where ps = a027748_row m (m, s') = deleteFindMin s (z:zs) = a050997_list -- Reinhard Zumkeller, Jun 03 2015
-
PARI
for(n=1,250000,if(n*sumdiv(n,d,isprime(d)/d^5)==floor(n*sumdiv(n,d,isprime(d)/d^5)),print1(n,",")))
-
PARI
\\ Gen(limit,k) defined in A036967. Gen(170000, 5) \\ Andrew Howroyd, Sep 10 2024
-
Python
from math import gcd from sympy import integer_nthroot, factorint def A069492(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c = n+x for t in range(1,integer_nthroot(x,9)[0]+1): if all(d<=1 for d in factorint(t).values()): for u in range(1,integer_nthroot(s:=x//t**9,8)[0]+1): if gcd(t,u)==1 and all(d<=1 for d in factorint(u).values()): for w in range(1,integer_nthroot(a:=s//u**8,7)[0]+1): if gcd(u,w)==1 and gcd(t,w)==1 and all(d<=1 for d in factorint(w).values()): for y in range(1,integer_nthroot(z:=a//w**7,6)[0]+1): if gcd(w,y)==1 and gcd(u,y)==1 and gcd(t,y)==1 and all(d<=1 for d in factorint(y).values()): c -= integer_nthroot(z//y**6,5)[0] return c return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024
Formula
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^4*(p-1))) = 1.0695724994489739263413712783666538355049945684326048537289707764272637... - Amiram Eldar, Jul 09 2020
Comments