cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A069499 Triangular numbers of the form 21*k.

Original entry on oeis.org

0, 21, 105, 210, 231, 378, 630, 861, 903, 1176, 1596, 1953, 2016, 2415, 3003, 3486, 3570, 4095, 4851, 5460, 5565, 6216, 7140, 7875, 8001, 8778, 9870, 10731, 10878, 11781, 13041, 14028, 14196, 15225, 16653, 17766, 17955, 19110, 20706, 21945, 22155, 23436, 25200
Offset: 1

Views

Author

Amarnath Murthy, Mar 30 2002

Keywords

Comments

Intersection of A000217 and A008603. - Michel Marcus, Sep 17 2013
Let F(r) = Product_{n >= 0} 1 - q^(21*(14*n+r)). The sequence terms occur as the exponents in the expansion of (1 - q^21)*F(5)*F(6)*F(7)*F(8)*F(9)*F(13)*F(14)*F(15) = 1 - q^21 - q^105 + q^210 + q^231 - q^378 - q^630 + + - - ... (by the quintuple product identity). - Peter Bala, Dec 23 2024

Crossrefs

Programs

  • Maple
    a[0] := 0:a[1] := 6:a[2] := 14:a[3] := 20:a[4] := 21:a[5] := 27:a[6] := 35:a[7] := 41:seq((42*(floor(i/8))+a[i mod 8])*(42*(floor(i/8))+a[i mod 8]+1)/2,i=0..100);
    # alternative program
    A := proc (q) local n: for n from 0 to q do if type((1/21)*n*(n+1)/2, integer) then print(n*(n+1)/2) fi; od; end: A(250); # Peter Bala, Dec 24 2024
  • Mathematica
    Select[21Range[1100],OddQ[Sqrt[8#+1]]&] (* Harvey P. Dale, Aug 16 2021 *)
    Select[Accumulate[Range[0,300]],IntegerQ[#/21]&] (* Harvey P. Dale, Jun 12 2022 *)

Formula

G.f.: -21*x^2*(x^2-x+1)*(x^4+5*x^3+9*x^2+5*x+1) / ((x-1)^3*(x+1)^2*(x^2+1)^2). - Colin Barker, Sep 23 2013
From Peter Bala, Dec 24 2025: (Start)
a(n) is quasi-polynomial in n:
a(4*n) = 21 * n*(21*n - 1)/2; a(4*n+1) = 21 * n*(21*n + 1)/2;
a(4*n+2) = 21 * (3*n + 1)*(7*n + 2)/2; a(4*n+3) = 21 * (3*n + 2)*(7*n + 5)/2. (End)

Extensions

More terms from Sascha Kurz, Apr 01 2002
a(1)=0 added and edited by Alois P. Heinz, Aug 19 2021

A180926 Numbers k such that 6*k and 10*k are triangular numbers.

Original entry on oeis.org

0, 1, 63, 3906, 242110, 15006915, 930186621, 57656563588, 3573776755836, 221516502298245, 13730449365735355, 851066344173293766, 52752382889378478138, 3269796672797292350791, 202674641330542747270905
Offset: 1

Views

Author

Vladimir Pletser, Sep 25 2010

Keywords

Comments

From Klaus Purath, Jul 25 2024: (Start)
Numbers k such that 48k + 1 is a square as well as the sum of two consecutive terms.
a(n) = t(n-1)*t(n)/(8*t(1)^2) where (t) is any recurrence t(k) = 8*t(k-1) - t(k-2) with t(0) = 0 and arbitrary t(1) != 0. (End)

Crossrefs

Subsequence of A154293.

Programs

  • Mathematica
    a[1] = 0; a[n_] := a[n] = (62 a[n - 1] + 1 + Sqrt[(48 a[n - 1] + 1)*(80 a[n - 1] + 1)])/2; Array[a, 14] (* Robert G. Wilson v, Sep 27 2010 *)
    Rest[CoefficientList[Series[-x^2/((x - 1) (x^2 - 62 x + 1)), {x, 0, 30}], x]] (* Vincenzo Librandi, Jun 26 2014 *)
    LinearRecurrence[{63,-63,1},{0,1,63},20] (* Harvey P. Dale, Dec 25 2019 *)
  • PARI
    isok(n) = ispolygonal(6*n, 3) && ispolygonal(10*n, 3); \\ Michel Marcus, Jun 25 2014

Formula

a(n) = (62*a(n-1) + 1 + ((48*a(n-1) + 1)*(80*a(n-1) + 1))^(1/2))/2 with a(1)=0.
G.f.: -x^2 / ((x-1)*(x^2-62*x+1)). - Colin Barker, Jun 25 2014
a(n) = (-8+(4+sqrt(15))*(31+8*sqrt(15))^(-n) - (-4+sqrt(15))*(31+8*sqrt(15))^n)/480. - Colin Barker, Mar 03 2016

Extensions

a(8) onwards from Robert G. Wilson v, Sep 27 2010
Showing 1-2 of 2 results.