cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A069671 Smallest n-digit triangular number with minimum digit sum.

Original entry on oeis.org

1, 10, 120, 2211, 10011, 112101, 2001000, 10006101, 200010000, 1210000221, 20000100000, 210010000005, 2000001000000, 32000004000000, 200000010000000, 3200000040000000, 20000000100000000, 320000000400000000, 2000000001000000000, 32000000004000000000
Offset: 1

Views

Author

Amarnath Murthy, Apr 06 2002

Keywords

Comments

Does the obvious pattern continue? - Vladeta Jovovic, Apr 07 2002

Crossrefs

Extensions

More terms from Vladeta Jovovic, Apr 07 2002
More terms from Sean A. Irvine, May 12 2024

A069672 Largest n-digit triangular number with minimum digit sum.

Original entry on oeis.org

1, 10, 300, 3003, 20100, 112101, 2001000, 33020001, 200010000, 3200120001, 20000100000, 320001200001, 2000001000000, 32000012000001, 200000010000000, 3200000120000001, 20000000100000000, 320000001200000001, 2000000001000000000, 32000000012000000001, 200000000010000000000, 3200000000120000000001, 20000000000100000000000, 320000000001200000000001, 2000000000001000000000000, 32000000000012000000000001, 200000000000010000000000000, 3200000000000120000000000001, 20000000000000100000000000000, 320000000000001200000000000001
Offset: 1

Views

Author

Amarnath Murthy, Apr 06 2002

Keywords

Comments

Does the obvious pattern continue? - Vladeta Jovovic, Apr 07 2002

Crossrefs

Programs

  • Maple
    F:= proc(d)
    local s, P, nP, S, x, bestx;
    bestx:= 0;
    for s in [1,3,6,9] do
      for P in map(op @combinat:-permute, combinat:-partition(s)) do
        nP:= nops(P);
        for S in map(t -> [d-1, op(t)], combinat:-choose([$0..d-2],nP-1)) do
          x:= add(P[i]*10^S[i],i=1..nP);
          if x > bestx and issqr(1+8*x) then bestx:= x fi;
        od;
      od;
      if bestx > 0 then return bestx fi;
    od;
    end proc:
    seq(F(d),d=1..30); # Robert Israel, May 25 2016

Extensions

More terms from Vladeta Jovovic, Apr 07 2002
a(15)..a(30) from Robert Israel, May 25 2016

A349875 Triangular numbers whose mean digit value reaches a new maximum.

Original entry on oeis.org

0, 1, 3, 6, 78, 686999778, 9876799878, 89996788896, 77779987999896, 589598998999878, 999699998689998991, 9988894989978899995, 95898999989999989765, 999999966989999986978996
Offset: 1

Views

Author

Jon E. Schoenfield, Dec 03 2021

Keywords

Comments

Subsequence of A068808.
No triangular number ends in 9, so the mean digit value is always less than 9.
Is this sequence finite? Or does the mean digit value approach some upper limit arbitrarily closely without ever reaching it exactly, and, if so, what is that limit?
a(14) <= 999999966989999986978996. - David A. Corneth, Dec 05 2021

Examples

			   n                  a(n)  digit sum  #dgts  mean digit value
  --  --------------------  ---------  -----  ----------------
   1                     0          0      1  0
   2                     1          1      1  1
   3                     3          3      1  3
   4                     6          6      1  6
   5                    78         15      2  7.5
   6             686999778         69      9  7.66666666666...
   7            9876799878         78     10  7.8
   8           89996788896         87     11  7.90909090909...
   9        77779987999896        111     14  7.92857142857...
  10       589598998999878        120     15  8
  11    999699998689998991        145     18  8.05555555555...
  12   9988894989978899995        154     19  8.10526315789...
  13  95898999989999989765        163     20  8.15
		

Crossrefs

Programs

  • Mathematica
    seq = {}; max = -1; Do[If[(m = Mean @ IntegerDigits[(t = n*(n + 1)/2)]) > max, max = m; AppendTo[seq, t]], {n, 0, 10^6}]; seq (* Amiram Eldar, Dec 03 2021 *)
  • Python
    def meandigval(n): s = str(n); return sum(map(int, s))/len(s)
    def afind(limit):
        alst, k, t, record = [], 0, 0, -1
        while t <= limit:
            mdv = meandigval(t)
            if mdv > record:
                print(t, end=", ")
                record = mdv
            k += 1
            t += k
    afind(10**14) # Michael S. Branicky, Dec 03 2021

Extensions

a(14) verified by Martin Ehrenstein, Dec 06 2021
Showing 1-3 of 3 results.