A069671
Smallest n-digit triangular number with minimum digit sum.
Original entry on oeis.org
1, 10, 120, 2211, 10011, 112101, 2001000, 10006101, 200010000, 1210000221, 20000100000, 210010000005, 2000001000000, 32000004000000, 200000010000000, 3200000040000000, 20000000100000000, 320000000400000000, 2000000001000000000, 32000000004000000000
Offset: 1
A069672
Largest n-digit triangular number with minimum digit sum.
Original entry on oeis.org
1, 10, 300, 3003, 20100, 112101, 2001000, 33020001, 200010000, 3200120001, 20000100000, 320001200001, 2000001000000, 32000012000001, 200000010000000, 3200000120000001, 20000000100000000, 320000001200000001, 2000000001000000000, 32000000012000000001, 200000000010000000000, 3200000000120000000001, 20000000000100000000000, 320000000001200000000001, 2000000000001000000000000, 32000000000012000000000001, 200000000000010000000000000, 3200000000000120000000000001, 20000000000000100000000000000, 320000000000001200000000000001
Offset: 1
Cf.
A069661,
A069662,
A069663,
A069664,
A069665,
A069666,
A069667,
A069668,
A069669,
A069670,
A069671.
-
F:= proc(d)
local s, P, nP, S, x, bestx;
bestx:= 0;
for s in [1,3,6,9] do
for P in map(op @combinat:-permute, combinat:-partition(s)) do
nP:= nops(P);
for S in map(t -> [d-1, op(t)], combinat:-choose([$0..d-2],nP-1)) do
x:= add(P[i]*10^S[i],i=1..nP);
if x > bestx and issqr(1+8*x) then bestx:= x fi;
od;
od;
if bestx > 0 then return bestx fi;
od;
end proc:
seq(F(d),d=1..30); # Robert Israel, May 25 2016
A349875
Triangular numbers whose mean digit value reaches a new maximum.
Original entry on oeis.org
0, 1, 3, 6, 78, 686999778, 9876799878, 89996788896, 77779987999896, 589598998999878, 999699998689998991, 9988894989978899995, 95898999989999989765, 999999966989999986978996
Offset: 1
n a(n) digit sum #dgts mean digit value
-- -------------------- --------- ----- ----------------
1 0 0 1 0
2 1 1 1 1
3 3 3 1 3
4 6 6 1 6
5 78 15 2 7.5
6 686999778 69 9 7.66666666666...
7 9876799878 78 10 7.8
8 89996788896 87 11 7.90909090909...
9 77779987999896 111 14 7.92857142857...
10 589598998999878 120 15 8
11 999699998689998991 145 18 8.05555555555...
12 9988894989978899995 154 19 8.10526315789...
13 95898999989999989765 163 20 8.15
-
seq = {}; max = -1; Do[If[(m = Mean @ IntegerDigits[(t = n*(n + 1)/2)]) > max, max = m; AppendTo[seq, t]], {n, 0, 10^6}]; seq (* Amiram Eldar, Dec 03 2021 *)
-
def meandigval(n): s = str(n); return sum(map(int, s))/len(s)
def afind(limit):
alst, k, t, record = [], 0, 0, -1
while t <= limit:
mdv = meandigval(t)
if mdv > record:
print(t, end=", ")
record = mdv
k += 1
t += k
afind(10**14) # Michael S. Branicky, Dec 03 2021
Showing 1-3 of 3 results.
Comments