A069756 Frobenius number of the numerical semigroup generated by consecutive squares.
23, 119, 359, 839, 1679, 3023, 5039, 7919, 11879, 17159, 24023, 32759, 43679, 57119, 73439, 93023, 116279, 143639, 175559, 212519, 255023, 303599, 358799, 421199, 491399, 570023, 657719, 755159, 863039, 982079, 1113023, 1256639, 1413719, 1585079, 1771559
Offset: 2
Examples
a(2)=23 because 23 is not a nonnegative linear combination of 4 and 9, but all integers greater than 23 are.
Links
- T. D. Noe, Table of n, a(n) for n = 2..1000
- R. Fröberg, C. Gottlieb and R. Häggkvist, On numerical semigroups, Semigroup Forum, 35 (1987), 63-83 (for definition of Frobenius number).
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Maple
seq(n^4+2*n^3-n^2-2*n-1, n=2..50); # Robert Israel, Nov 01 2015
-
Mathematica
Table[(n^2-1)((n+1)^2-1)-1, {n,2,30}] (* T. D. Noe, Nov 27 2006 *) FrobeniusNumber/@Partition[Range[2,40]^2,2,1] (* Harvey P. Dale, Jul 25 2012 *)
-
PARI
x='x+O('x^50); Vec(x^2*(23+4*x-6*x^2+4*x^3-x^4)/(1-x)^5) \\ Altug Alkan, Nov 01 2015
Formula
a(n) = n^2*(n+1)^2-n^2-(n+1)^2 = n^4+2*n^3-n^2-2*n-1.
a(n) = Numerator of ((n + 2)! - (n - 2)!)/n!, n >=2. - Artur Jasinski, Jan 09 2007
G.f.: x^2*(23+4*x-6*x^2+4*x^3-x^4)/(1-x)^5. [Colin Barker, Feb 14 2012]
a(n) = (n-1)*n*(n+1)*(n+2) - 1 = A052762(n+2) - 1. - Jean-Christophe Hervé, Nov 01 2015
Extensions
Corrected by T. D. Noe, Nov 27 2006
Comments