cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A217301 Numbers n such that gcd(n, phi(n)) = gcd(phi(n), sigma(n)) = gcd(sigma(n), n) = tau(n).

Original entry on oeis.org

1, 184, 376, 1336, 1912, 2104, 2872, 3064, 3832, 4024, 4792, 5176, 5752, 5944, 6712, 6904, 7096, 7864, 8824, 9784, 10552, 10936, 11512, 11896, 12472, 12664, 12856, 14584, 14776, 16312, 16504, 16696, 17656, 19192, 19384, 19576, 20344, 21304, 21496, 22644
Offset: 1

Views

Author

Jayanta Basu, Mar 17 2013

Keywords

Crossrefs

Cf. A069810.

Programs

  • Mathematica
    Select[Range[20000], GCD[#, EulerPhi[#]] ==  GCD[EulerPhi[#], DivisorSigma[1, #]] == GCD[#, DivisorSigma[1, #]] == DivisorSigma[0, #] &] (* Jean-François Alcover, Mar 18 2013 *)

A306667 Numbers m such that lcm(tau(m), m) = sigma(m) where sigma(k) = the sum of the divisors of k (A000203) and tau(k) = the number of the divisors of k (A000005).

Original entry on oeis.org

1, 6, 32760, 51001180160, 54530444405217553992377326508106948362108928, 133821156044600922812153118065015159487725568, 42274041475824304453686528060845522019324411248640, 48949643430560436794021629524876790263031553747866371344635527168
Offset: 1

Views

Author

Jaroslav Krizek, Mar 04 2019

Keywords

Comments

Numbers m such that A009230(m) = A000203(m).
Subsequence of multiply-perfect numbers (A007691).

Examples

			6 is a term because lcm(tau(6), 6) = lcm(4, 6) = 12 = sigma(6).
		

Crossrefs

Cf. A069810 (gcd(k, sigma(k)) = tau(k)).

Programs

  • Magma
    [n: n in [1..100000] | LCM(NumberOfDivisors(n), n) eq SumOfDivisors(n)]

Extensions

a(4)-a(8) computed from A007691 data by Giovanni Resta, Mar 05 2019

A224108 Numbers k such that tau(k) divides k, sigma(k) and phi(k).

Original entry on oeis.org

1, 56, 184, 248, 376, 504, 568, 632, 672, 824, 864, 1016, 1208, 1248, 1336, 1528, 1592, 1656, 1784, 1824, 1912, 2016, 2104, 2168, 2232, 2488, 2688, 2872, 2936, 2976, 3064, 3360, 3384, 3448, 3512, 3552, 3704, 3832, 3896, 3968, 4024, 4128, 4284, 4320, 4792, 4856, 5048
Offset: 1

Views

Author

Jayanta Basu, Mar 31 2013

Keywords

Comments

4 | a(n) for n > 1. Natural density 0. - Charles R Greathouse IV, Mar 31 2013
Zelinsky (2002) called these terms "rare numbers", and noted that if p and q are distinct primes, not equal to 2,3 or 7, then 672*p*q is a term. He proved that for any k > 0 and for sufficiently large m the number of terms not exceeding m is > k*pi(m), where pi(m) = A000720(m). - Amiram Eldar, Feb 20 2021

Examples

			56 is in the sequence because 56 has 8 divisors (1, 2, 4, 7, 8, 14, 28, 56), and 8 is a divisor of 56, as well as of sigma(56) = 120 and of phi(56) = 24.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], GCD[DivisorSigma[1, #], #, EulerPhi[#], DivisorSigma[0, #]] == DivisorSigma[0, #] &]
    Select[Range[5100],AllTrue[{#,DivisorSigma[1,#],EulerPhi[#]}/ DivisorSigma[ 0,#], IntegerQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 02 2019 *)
  • PARI
    is(n)=my(t=numdiv(n)); n%t==0 && sigma(n)%t==0 && eulerphi(n)%t==0 \\ Charles R Greathouse IV, Mar 31 2013

A306655 Numbers n such that lcm(sigma(n), n) = tau(n) * sigma(n) where sigma(k) = the sum of the divisors of k (A000203) and tau(k) = the number of divisors of k (A000005).

Original entry on oeis.org

1, 2, 18, 468, 9360, 10880, 79360, 84480, 387072, 777216, 3801600, 7282688, 15037440, 17418240, 27067392, 65544192, 752903424, 1218032640, 4227842304, 4737761280, 6410638080, 11949932544, 19327057920, 26372530800, 37645171200, 224956569600, 243520929792, 876611248128
Offset: 1

Views

Author

Jaroslav Krizek, Mar 03 2019

Keywords

Comments

Numbers n such that A009242(n) = A000005(n) * A000203(n) = A064840(n).
Also numbers n such that A017666(n) = denominator(sigma(n)/n) = tau(n) = A000005(n).
a(29) > 10^12. - Giovanni Resta, Mar 04 2019

Examples

			18 is a term because lcm(sigma(18), 18) = lcm(39, 18) = 234 = tau(18) * sigma(18) = 6 * 39.
		

Crossrefs

Cf. A069810 (gcd(sigma(n), n) = tau(n)).

Programs

  • Magma
    [n: n in [1..1000000] | LCM(SumOfDivisors(n), n) eq NumberOfDivisors(n)* SumOfDivisors(n)]
    
  • Mathematica
    Select[Range[1000000], LCM[DivisorSigma[1, #], #] == DivisorSigma[0, #] * DivisorSigma[1, #]&] (* Vaclav Kotesovec, Mar 04 2019 *)
  • PARI
    isok(n) = my(sn = sigma(n)); lcm(sn, n) == sn*numdiv(n); \\ Michel Marcus, Mar 04 2019

Extensions

a(13)-a(16) from Vaclav Kotesovec, Mar 04 2019
a(17) from Daniel Suteu, Mar 04 2019
a(18)-a(28) from Giovanni Resta, Mar 04 2019
Showing 1-4 of 4 results.