A164329 Numbers which yield a prime whenever a zero is inserted between any two digits.
11, 13, 17, 19, 37, 41, 49, 53, 59, 61, 67, 71, 79, 89, 97, 109, 113, 119, 121, 131, 133, 149, 161, 169, 191, 197, 203, 227, 239, 253, 269, 281, 283, 299, 301, 319, 323, 337, 367, 379, 383, 401, 403, 407, 421, 449, 457, 473, 493, 499, 503, 509, 511, 539, 551
Offset: 1
Examples
998471 is in the sequence because all the five numbers 9098471, 9908471, 9980471, 9984071 and 9984701 are primes.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A216169 (subset of composite terms), A215417 (subset of primes), A159236 (0 is inserted between all digits).
Cf. A068679 (1 is prefixed, appended or inserted anywhere), A069246 (primes among these), A068673 (1 is prefixed, or appended).
Cf. A069832 (7 is prefixed, appended or inserted anywhere), A215420 (primes among these), A068677 (7 is prefixed or appended).
Cf. A158232 (13 is prefixed or appended).
Programs
-
Mathematica
f[n_]:=(r=IntegerDigits[n];l=Length[r];For[k=2,PrimeQ[FromDigits[Insert [r,0,k]]],k++ ];If[k==l+1,n,0]);Select[Range[11,560],f[ # ]>0&]
-
PARI
is(n, L=logint(n+!n, 10)+1, P)={!for(k=1, L-1, isprime([10*P=10^(L-k),1]*divrem(n, P))||return) && n>9} \\ M. F. Hasler, May 10 2018
Extensions
Erroneous comment and cross-references deleted by M. F. Hasler, May 10 2018
Comments