A069904 Number of prime factors of n-th triangular number (with multiplicity).
0, 1, 2, 2, 2, 2, 3, 4, 3, 2, 3, 3, 2, 3, 5, 4, 3, 3, 3, 4, 3, 2, 4, 5, 3, 4, 5, 3, 3, 3, 5, 6, 3, 3, 5, 4, 2, 3, 5, 4, 3, 3, 3, 5, 4, 2, 5, 6, 4, 4, 4, 3, 4, 5, 5, 5, 3, 2, 4, 4, 2, 4, 8, 7, 4, 3, 3, 4, 4, 3, 5, 5, 2, 4, 5, 4, 4, 3, 5, 8, 5, 2, 4, 5, 3, 3, 5, 4, 4, 5
Offset: 1
Keywords
Examples
A000217(8) = 8*(8+1)/2 = 36 = 2*2*3*3, therefore a(8) = 4.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Crossrefs
Programs
-
Mathematica
Array[Plus@@Last/@FactorInteger[ #*(#+1)/2]&,33] (* Vladimir Joseph Stephan Orlovsky, Feb 28 2010 *)
-
PARI
A069904(n) = bigomega((n*(n+1))/2); \\ Antti Karttunen, Oct 07 2017
Formula
From Antti Karttunen, Oct 07 2017: (Start)
From Alois P. Heinz, Aug 05 2019: (Start)
a(n) = 2 <=> n in { A164977 }.
a(n) = 3 <=> n in { A108815 }.
a(n) = 4 <=> n in { A114435 }.
a(n) = 5 <=> n in { A114436 }.
a(n) = 6 <=> n in { A114437 }.
a(n) = 7 <=> n in { A240527 }.
a(n) = 8 <=> n in { A240528 }.
a(n) = 9 <=> n in { A240529 }.
a(n) = 10 <=> n im { A101745 }. (End)