cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A069959 Define C(n) by the recursion C(0) = 2*i where i^2 = -1, C(n+1) = 1/(1 + C(n)), then a(n) = 2*(-1)^n/Im(C(n)) where Im(z) denotes the imaginary part of the complex number z.

Original entry on oeis.org

1, 5, 8, 25, 61, 164, 425, 1117, 2920, 7649, 20021, 52420, 137233, 359285, 940616, 2462569, 6447085, 16878692, 44188985, 115688269, 302875816, 792939185, 2075941733, 5434886020, 14228716321, 37251262949, 97525072520, 255323954617, 668446791325, 1750016419364
Offset: 0

Views

Author

Benoit Cloitre, Apr 28 2002

Keywords

Comments

If we define C(n) with C(0) = i in the recurrence C(n+1) = 1/(1 + C(n)) then Im(C(n)) = 1/Fibonacci(2*n+1).
Here, C(n) is defined with C(0) = 2*i in C(n) = (F(n) + C(0)*F(n-1))/(F(n+1) + C(0)*F(n)) = (F(n)*(F(n+1) + 4*F(n-1)) + (-1)^n*2*i)/(F(n+1)^2 + 4*F(n)^2), where F(n) = Fibonacci(n), for which Im(C(n)) = 2*(-1)^n/(F(n+1)^2 + 4*F(n)^2).

Crossrefs

Programs

  • Magma
    F:=Fibonacci; [F(n+1)^2 +4*F(n)^2: n in [0..40]]; // G. C. Greubel, Aug 17 2022
    
  • Mathematica
    a[n_]:= 4Fibonacci[n]^2+Fibonacci[n+1]^2;
    4#[[1]]^2+#[[2]]^2&/@Partition[Fibonacci[Range[0,30]],2,1] (* or *) LinearRecurrence[{2,2,-1},{1,5,8},30] (* Harvey P. Dale, Aug 25 2017 *)
  • PARI
    a(n) = round((2^(-1-n)*(-3*(-1)^n*2^(2+n)-(3-sqrt(5))^n*(-11+sqrt(5))+(3+sqrt(5))^n*(11+sqrt(5))))/5) \\ Colin Barker, Sep 28 2016
    
  • PARI
    Vec(-(x-1)*(4*x+1)/((x+1)*(x^2-3*x+1)) + O(x^40)) \\ Colin Barker, Sep 28 2016
    
  • SageMath
    f=fibonacci; [f(n+1)^2+4*f(n)^2 for n in (0..40)] # G. C. Greubel, Aug 17 2022

Formula

a(n) = 4*F(n)^2 + F(n+1)^2, where F(n) = A000045(n) is the n-th Fibonacci number.
From Colin Barker, Jun 14 2013: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
G.f.: (1-x)*(1+4*x) / ((1+x)*(1-3*x+x^2)). (End)
a(n) = (2^(-1-n)*(-3*(-1)^n*2^(2+n) - (3-sqrt(5))^n*(-11+sqrt(5)) + (3+sqrt(5))^n*(11+sqrt(5))))/5. - Colin Barker, Sep 28 2016

Extensions

Edited by Dean Hickerson, May 08 2002

A069963 Define C(n) by the recursion C(0) = 6*i where i^2 = -1, C(n+1) = 1/(1 + C(n)), then a(n) = 6*(-1)^n/Im(C(n)) where Im(z) denotes the imaginary part of z.

Original entry on oeis.org

1, 37, 40, 153, 349, 964, 2473, 6525, 17032, 44641, 116821, 305892, 800785, 2096533, 5488744, 14369769, 37620493, 98491780, 257854777, 675072621, 1767363016, 4627016497, 12113686405, 31714042788, 83028441889, 217371282949, 569085406888, 1489884937785
Offset: 0

Views

Author

Benoit Cloitre, Apr 28 2002

Keywords

Comments

If we define C(n) with C(0) = i then Im(C(n)) = 1/F(2*n+1) where F(k) are the Fibonacci numbers.
Here, C(n) is defined with C(0) = 6*i in C(n) = (F(n) + C(0)*F(n-1))/(F(n+1) + C(0)*F(n)) = (F(n)*(F(n+1) + 36*F(n-1)) + (-1)^n*6*i)/(F(n+1)^2 + 36*F(n)^2), where F(n) = Fibonacci(n), for which Im(C(n)) = 6*(-1)^n/(F(n+1)^2 + 36*F(n)^2).

Crossrefs

Programs

  • Magma
    F:=Fibonacci; [F(n+1)^2 + 36*F(n)^2: n in [0..40]]; // G. C. Greubel, Aug 18 2022
    
  • Mathematica
    a[n_]:= 36*Fibonacci[n]^2 +Fibonacci[n+1]^2; Table[a[n], {n,0,30}]
  • PARI
    a(n)=36*fibonacci(n)^2+fibonacci(n+1)^2 \\ Charles R Greathouse IV, Jun 14 2013
    
  • PARI
    a(n) = round((2^(-1-n)*(-35*(-1)^n*2^(2+n)-(3-sqrt(5))^n*(-75+sqrt(5))+(3+sqrt(5))^n*(75+sqrt(5))))/5) \\ Colin Barker, Sep 28 2016
    
  • PARI
    Vec(-(x-1)*(36*x+1)/((x+1)*(x^2-3*x+1)) + O(x^30)) \\ Colin Barker, Sep 28 2016
    
  • SageMath
    f=fibonacci; [f(n+1)^2 +36*f(n)^2 for n in (0..40)] # G. C. Greubel, Aug 18 2022

Formula

a(n) = 36*F(n)^2 + F(n+1)^2, where F(n) = A000045(n) is the n-th Fibonacci number.
From Colin Barker, Jun 14 2013: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
G.f.: (1-x) *(1+36*x) / ((1+x)*(1-3*x+x^2)). (End)
a(n) = (2^(-1-n)*(-35*(-1)^n*2^(2+n) - (3-sqrt(5))^n*(-75+sqrt(5)) + (3+sqrt(5))^n*(75+sqrt(5))))/5. - Colin Barker, Sep 28 2016

Extensions

Edited by Dean Hickerson, May 08 2002

A069960 Define C(n) by the recursion C(0) = 3*i where i^2 = -1, C(n+1) = 1/(1 + C(n)), then a(n) = 3*(-1)^n/Im(C(n)) where Im(z) denotes the imaginary part of the complex number z.

Original entry on oeis.org

1, 10, 13, 45, 106, 289, 745, 1962, 5125, 13429, 35146, 92025, 240913, 630730, 1651261, 4323069, 11317930, 29630737, 77574265, 203092074, 531701941, 1392013765, 3644339338, 9541004265, 24978673441, 65395016074, 171206374765, 448224108237, 1173465949930
Offset: 0

Views

Author

Benoit Cloitre, Apr 28 2002

Keywords

Comments

If we define C(n) with C(0) = i then Im(C(n)) = 1/F(2*n+1) where F(k) are the Fibonacci numbers.
Here, C(n) = (F(n) + C(0)*F(n-1))/(F(n+1) + C(0)*F(n)) = (F(n)*(F(n+1) + 9*F(n-1)) + 3*i*(-1)^n)/(F(n+1)^2 + 9*F(n)^2), where F(n) = Fibonacci(n), for which Im(C(n)) = 3*(-1)^n/(F(n+1)^2 + 9*F(n)^2).

Crossrefs

Programs

  • Magma
    F:=Fibonacci; [F(n+1)^2 +9*F(n)^2: n in [0..40]]; // G. C. Greubel, Aug 17 2022
    
  • Mathematica
    a[n_] := 9Fibonacci[n]^2+Fibonacci[n+1]^2
    9*First[#]+Last[#]&/@(Partition[Fibonacci[Range[0,30]],2,1]^2) (* Harvey P. Dale, Mar 06 2012 *)
  • PARI
    a(n) = round((2^(-1-n)*(-(-1)^n*2^(5+n)-(3-sqrt(5))^n*(-21+sqrt(5))+(3+sqrt(5))^n*(21+sqrt(5))))/5) \\ Colin Barker, Sep 30 2016
    
  • PARI
    Vec(-(x-1)*(9*x+1)/((x+1)*(x^2-3*x+1)) + O(x^30)) \\ Colin Barker, Sep 30 2016
    
  • SageMath
    f=fibonacci; [f(n+1)^2 +9*f(n)^2 for n in (0..40)] # G. C. Greubel, Aug 17 2022

Formula

a(n) = 9*F(n)^2 + F(n+1)^2, where F(n) = A000045(n) is the n-th Fibonacci number.
From Colin Barker, Jun 14 2013: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
G.f.: (1-x)*(1+9*x) / ((1+x)*(1-3*x+x^2)). (End)
a(n) = (2^(-1-n)*(-(-1)^n*2^(5+n) - (3-sqrt(5))^n*(-21+sqrt(5)) + (3+sqrt(5))^n*(21+sqrt(5))))/5. - Colin Barker, Sep 30 2016

Extensions

Edited by Dean Hickerson, May 08 2002

A069961 Define C(n) by the recursion C(0) = 4*i where i^2 = -1, C(n+1) = 1/(1 + C(n)), then a(n) = 4*(-1)^n/Im(C(n)) where Im(z) denotes the imaginary part of z.

Original entry on oeis.org

1, 17, 20, 73, 169, 464, 1193, 3145, 8212, 21521, 56321, 147472, 386065, 1010753, 2646164, 6927769, 18137113, 47483600, 124313657, 325457401, 852058516, 2230718177, 5840095985, 15289569808, 40028613409, 104796270449, 274360197908, 718284323305, 1880492771977
Offset: 0

Views

Author

Benoit Cloitre, Apr 28 2002

Keywords

Comments

If we define C(n) with C(0) = i then Im(C(n)) = 1/F(2*n+1) where F(k) are the Fibonacci numbers.
Here, C(n) = (F(n) + C(0)*F(n-1))/(F(n+1) + C(0)*F(n)) = (F(n)*(F(n+1) + 16*F(n-1)) + (-1)^n*4*i)/(F(n+1)^2 + 16*F(n)^2), where F(n) = Fibonacci(n), for which Im(C(n)) = 4*(-1)^n/(F(n+1)^2 + 16*F(n)^2).

Crossrefs

Programs

  • Magma
    F:=Fibonacci; [F(n+1)^2 + 16*F(n)^2: n in [0..40]]; // G. C. Greubel, Aug 17 2022
    
  • Mathematica
    a[n_]:= 16Fibonacci[n]^2+Fibonacci[n+1]^2; Array[a,30,0]
    16First[#]^2+Last[#]^2&/@Partition[Fibonacci[Range[0,30]],2,1] (* Harvey P. Dale, Nov 08 2011 *)
  • PARI
    a(n) = round((2^(-1-n)*(-15*(-1)^n*2^(2+n)-(3-sqrt(5))^n*(-35+sqrt(5))+(3+sqrt(5))^n*(35+sqrt(5))))/5) \\ Colin Barker, Oct 01 2016
    
  • PARI
    Vec(-(x-1)*(16*x+1)/((x+1)*(x^2-3*x+1)) + O(x^30)) \\ Colin Barker, Oct 01 2016
    
  • SageMath
    f=fibonacci; [f(n+1)^2 +16*f(n)^2 for n in (0..40)] # G. C. Greubel, Aug 17 2022

Formula

a(n) = 16*F(n)^2 + F(n+1)^2, where F(n) = A000045(n) is the n-th Fibonacci number.
From Colin Barker, Jun 14 2013: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
G.f.: (1-x)*(1+16*x) / ((1+x)*(1-3*x+x^2)). (End)
a(n) = (2^(-1-n)*(-15*(-1)^n*2^(2+n) - (3-sqrt(5))^n*(-35+sqrt(5)) + (3+sqrt(5))^n*(35+sqrt(5))))/5. - Colin Barker, Oct 01 2016

Extensions

Edited by Dean Hickerson, May 08 2002
Showing 1-4 of 4 results.