cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A069921 Define C(n) by the recursion C(0) = 1 + I where I^2 = -1, C(n+1) = 1/(1+C(n)); then a(n) = (-1)^n/Im(C(n)) where Im(z) is the imaginary part of the complex number z.

Original entry on oeis.org

1, 5, 10, 29, 73, 194, 505, 1325, 3466, 9077, 23761, 62210, 162865, 426389, 1116298, 2922509, 7651225, 20031170, 52442281, 137295677, 359444746, 941038565, 2463670945, 6449974274, 16886251873, 44208781349, 115740092170, 303011495165, 793294393321
Offset: 0

Views

Author

Benoit Cloitre, May 05 2002

Keywords

Comments

C(n) = (F(n) + F(n-1)*C(0))/(F(n+1) + F(n)*C(0)) = (3*F(n)*F(n+1) + (-1)^n*(1+I))/(3*F(n)*F(n+2) + (-1)^n).
a(n) = F(n+2)^2 + F(n)^2 is the square of the short sides L(n) of the parallelogram appearing in the dissection fallacy of the square F(n+3) X F(n+3), where F(n) is the Fibonacci number A000045(n). For n >= 0, floor(L(n)/h(n)) = A014742(n) (see the proof there), where h(n) is the perpendicular distance between the long sides LL(n) = L(n+1). a(n) is also the first difference of A014742(n). See the link with an illustration. - Kival Ngaokrajang, Jun 27 2014, edited by Wolfdieter Lang, Jul 16 2014
Re(C(n)) = A014742(n)/a(n), n >= 0. For Im(C(n)) see the name. - Wolfdieter Lang, Jul 16 2014

Crossrefs

Programs

  • Magma
    [3*Fibonacci(n)*Fibonacci(n+2)+(-1)^n: n in [0..40]]; // Vincenzo Librandi, Sep 24 2015
  • Mathematica
    a[n_] := 3Fibonacci[n]Fibonacci[n+2]+(-1)^n
    (*A000045*) F[n_] := (((1 + Sqrt[5])/2)^n - ((1 - Sqrt[5])/2)^n)/Sqrt[5]; (*A000032*) L[n_] := ((1 + Sqrt[5])/2)^n + ((1 - Sqrt[5])/2)^n; Table[FullSimplify[ExpandAll[(F[n]^2 + L[n]^2)/2]], {n, 0, 50}] (* Roger L. Bagula, Nov 17 2008 *)
    LinearRecurrence[{2, 2, -1}, {1, 5, 10}, 70] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; -1,2,2]^n*[1;5;10])[1,1] \\ Charles R Greathouse IV, Sep 23 2015
    

Formula

a(n) = 3*F(n)*F(n+2) + (-1)^n = 3*A059929(n) +(-1)^n, where F(n) = A000045(n) is the n-th Fibonacci number.
a(n) = ceiling(3/5*(g/2)^(n+1))-(1+(-1)^n)/2, with g = 3 + sqrt(5).
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3). - Vladeta Jovovic, May 06 2002
G.f.: (1+3*x-2*x^2)/((1+x)*(1-3*x+x^2)). - Vladeta Jovovic, May 06 2002
a(n) = F(n)^2 + F(n+2)^2. - Ron Knott, Aug 02 2004
a(n-1) = (A000045(n)^2 + A000032(n)^2)/2. - Roger L. Bagula, Nov 17 2008
a(n) = 2*F(n)*F(n+2) + F(n+1)^2 = F(n+1)*F(n+3) + F(n)^2 +(-1)^(n-1). - J. M. Bergot, Sep 15 2012
Equals the logarithmic derivative of A224415. - Paul D. Hanna, Apr 05 2013
2*a(n) = Fibonacci(n+1)^2 + Lucas(n+1)^2. - Bruno Berselli, Sep 26 2017

Extensions

Edited by Dean Hickerson, May 08 2002

A069963 Define C(n) by the recursion C(0) = 6*i where i^2 = -1, C(n+1) = 1/(1 + C(n)), then a(n) = 6*(-1)^n/Im(C(n)) where Im(z) denotes the imaginary part of z.

Original entry on oeis.org

1, 37, 40, 153, 349, 964, 2473, 6525, 17032, 44641, 116821, 305892, 800785, 2096533, 5488744, 14369769, 37620493, 98491780, 257854777, 675072621, 1767363016, 4627016497, 12113686405, 31714042788, 83028441889, 217371282949, 569085406888, 1489884937785
Offset: 0

Views

Author

Benoit Cloitre, Apr 28 2002

Keywords

Comments

If we define C(n) with C(0) = i then Im(C(n)) = 1/F(2*n+1) where F(k) are the Fibonacci numbers.
Here, C(n) is defined with C(0) = 6*i in C(n) = (F(n) + C(0)*F(n-1))/(F(n+1) + C(0)*F(n)) = (F(n)*(F(n+1) + 36*F(n-1)) + (-1)^n*6*i)/(F(n+1)^2 + 36*F(n)^2), where F(n) = Fibonacci(n), for which Im(C(n)) = 6*(-1)^n/(F(n+1)^2 + 36*F(n)^2).

Crossrefs

Programs

  • Magma
    F:=Fibonacci; [F(n+1)^2 + 36*F(n)^2: n in [0..40]]; // G. C. Greubel, Aug 18 2022
    
  • Mathematica
    a[n_]:= 36*Fibonacci[n]^2 +Fibonacci[n+1]^2; Table[a[n], {n,0,30}]
  • PARI
    a(n)=36*fibonacci(n)^2+fibonacci(n+1)^2 \\ Charles R Greathouse IV, Jun 14 2013
    
  • PARI
    a(n) = round((2^(-1-n)*(-35*(-1)^n*2^(2+n)-(3-sqrt(5))^n*(-75+sqrt(5))+(3+sqrt(5))^n*(75+sqrt(5))))/5) \\ Colin Barker, Sep 28 2016
    
  • PARI
    Vec(-(x-1)*(36*x+1)/((x+1)*(x^2-3*x+1)) + O(x^30)) \\ Colin Barker, Sep 28 2016
    
  • SageMath
    f=fibonacci; [f(n+1)^2 +36*f(n)^2 for n in (0..40)] # G. C. Greubel, Aug 18 2022

Formula

a(n) = 36*F(n)^2 + F(n+1)^2, where F(n) = A000045(n) is the n-th Fibonacci number.
From Colin Barker, Jun 14 2013: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
G.f.: (1-x) *(1+36*x) / ((1+x)*(1-3*x+x^2)). (End)
a(n) = (2^(-1-n)*(-35*(-1)^n*2^(2+n) - (3-sqrt(5))^n*(-75+sqrt(5)) + (3+sqrt(5))^n*(75+sqrt(5))))/5. - Colin Barker, Sep 28 2016

Extensions

Edited by Dean Hickerson, May 08 2002

A069960 Define C(n) by the recursion C(0) = 3*i where i^2 = -1, C(n+1) = 1/(1 + C(n)), then a(n) = 3*(-1)^n/Im(C(n)) where Im(z) denotes the imaginary part of the complex number z.

Original entry on oeis.org

1, 10, 13, 45, 106, 289, 745, 1962, 5125, 13429, 35146, 92025, 240913, 630730, 1651261, 4323069, 11317930, 29630737, 77574265, 203092074, 531701941, 1392013765, 3644339338, 9541004265, 24978673441, 65395016074, 171206374765, 448224108237, 1173465949930
Offset: 0

Views

Author

Benoit Cloitre, Apr 28 2002

Keywords

Comments

If we define C(n) with C(0) = i then Im(C(n)) = 1/F(2*n+1) where F(k) are the Fibonacci numbers.
Here, C(n) = (F(n) + C(0)*F(n-1))/(F(n+1) + C(0)*F(n)) = (F(n)*(F(n+1) + 9*F(n-1)) + 3*i*(-1)^n)/(F(n+1)^2 + 9*F(n)^2), where F(n) = Fibonacci(n), for which Im(C(n)) = 3*(-1)^n/(F(n+1)^2 + 9*F(n)^2).

Crossrefs

Programs

  • Magma
    F:=Fibonacci; [F(n+1)^2 +9*F(n)^2: n in [0..40]]; // G. C. Greubel, Aug 17 2022
    
  • Mathematica
    a[n_] := 9Fibonacci[n]^2+Fibonacci[n+1]^2
    9*First[#]+Last[#]&/@(Partition[Fibonacci[Range[0,30]],2,1]^2) (* Harvey P. Dale, Mar 06 2012 *)
  • PARI
    a(n) = round((2^(-1-n)*(-(-1)^n*2^(5+n)-(3-sqrt(5))^n*(-21+sqrt(5))+(3+sqrt(5))^n*(21+sqrt(5))))/5) \\ Colin Barker, Sep 30 2016
    
  • PARI
    Vec(-(x-1)*(9*x+1)/((x+1)*(x^2-3*x+1)) + O(x^30)) \\ Colin Barker, Sep 30 2016
    
  • SageMath
    f=fibonacci; [f(n+1)^2 +9*f(n)^2 for n in (0..40)] # G. C. Greubel, Aug 17 2022

Formula

a(n) = 9*F(n)^2 + F(n+1)^2, where F(n) = A000045(n) is the n-th Fibonacci number.
From Colin Barker, Jun 14 2013: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
G.f.: (1-x)*(1+9*x) / ((1+x)*(1-3*x+x^2)). (End)
a(n) = (2^(-1-n)*(-(-1)^n*2^(5+n) - (3-sqrt(5))^n*(-21+sqrt(5)) + (3+sqrt(5))^n*(21+sqrt(5))))/5. - Colin Barker, Sep 30 2016

Extensions

Edited by Dean Hickerson, May 08 2002

A069961 Define C(n) by the recursion C(0) = 4*i where i^2 = -1, C(n+1) = 1/(1 + C(n)), then a(n) = 4*(-1)^n/Im(C(n)) where Im(z) denotes the imaginary part of z.

Original entry on oeis.org

1, 17, 20, 73, 169, 464, 1193, 3145, 8212, 21521, 56321, 147472, 386065, 1010753, 2646164, 6927769, 18137113, 47483600, 124313657, 325457401, 852058516, 2230718177, 5840095985, 15289569808, 40028613409, 104796270449, 274360197908, 718284323305, 1880492771977
Offset: 0

Views

Author

Benoit Cloitre, Apr 28 2002

Keywords

Comments

If we define C(n) with C(0) = i then Im(C(n)) = 1/F(2*n+1) where F(k) are the Fibonacci numbers.
Here, C(n) = (F(n) + C(0)*F(n-1))/(F(n+1) + C(0)*F(n)) = (F(n)*(F(n+1) + 16*F(n-1)) + (-1)^n*4*i)/(F(n+1)^2 + 16*F(n)^2), where F(n) = Fibonacci(n), for which Im(C(n)) = 4*(-1)^n/(F(n+1)^2 + 16*F(n)^2).

Crossrefs

Programs

  • Magma
    F:=Fibonacci; [F(n+1)^2 + 16*F(n)^2: n in [0..40]]; // G. C. Greubel, Aug 17 2022
    
  • Mathematica
    a[n_]:= 16Fibonacci[n]^2+Fibonacci[n+1]^2; Array[a,30,0]
    16First[#]^2+Last[#]^2&/@Partition[Fibonacci[Range[0,30]],2,1] (* Harvey P. Dale, Nov 08 2011 *)
  • PARI
    a(n) = round((2^(-1-n)*(-15*(-1)^n*2^(2+n)-(3-sqrt(5))^n*(-35+sqrt(5))+(3+sqrt(5))^n*(35+sqrt(5))))/5) \\ Colin Barker, Oct 01 2016
    
  • PARI
    Vec(-(x-1)*(16*x+1)/((x+1)*(x^2-3*x+1)) + O(x^30)) \\ Colin Barker, Oct 01 2016
    
  • SageMath
    f=fibonacci; [f(n+1)^2 +16*f(n)^2 for n in (0..40)] # G. C. Greubel, Aug 17 2022

Formula

a(n) = 16*F(n)^2 + F(n+1)^2, where F(n) = A000045(n) is the n-th Fibonacci number.
From Colin Barker, Jun 14 2013: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
G.f.: (1-x)*(1+16*x) / ((1+x)*(1-3*x+x^2)). (End)
a(n) = (2^(-1-n)*(-15*(-1)^n*2^(2+n) - (3-sqrt(5))^n*(-35+sqrt(5)) + (3+sqrt(5))^n*(35+sqrt(5))))/5. - Colin Barker, Oct 01 2016

Extensions

Edited by Dean Hickerson, May 08 2002

A069962 Define C(n) by the recursion C(0) = 5*i where i^2 = -1, C(n+1) = 1/(1 + C(n)), then a(n) = 5*(-1)^n/Im(C(n)) where Im(z) denotes the imaginary part of z.

Original entry on oeis.org

1, 26, 29, 109, 250, 689, 1769, 4666, 12181, 31925, 83546, 218761, 572689, 1499354, 3925325, 10276669, 26904634, 70437281, 184407161, 482784250, 1263945541, 3309052421, 8663211674, 22680582649, 59378536225, 155455026074, 406986541949, 1065504599821
Offset: 0

Views

Author

Benoit Cloitre, Apr 28 2002

Keywords

Comments

If we define C(n) with C(0) = i then Im(C(n)) = 1/F(2*n+1) where F(k) are the Fibonacci numbers.
Here, C(n) is defined with C(0) = 5*i in C(n) = (F(n) + C(0)*F(n-1))/(F(n+1) + C(0)*F(n)) = (F(n)*(F(n+1) + 25*F(n-1)) + (-1)^n*2*i)/(F(n+1)^2 + 25*F(n)^2), where F(n) = Fibonacci(n), for which Im(C(n)) = 2*(-1)^n/(F(n+1)^2 + 25*F(n)^2).

Crossrefs

Programs

  • Magma
    F:=Fibonacci; [F(n+1)^2 + 25*F(n)^2: n in [0..40]]; // G. C. Greubel, Aug 17 2022
    
  • Mathematica
    a[n_]:= 25*Fibonacci[n]^2+Fibonacci[n+1]^2; Table[a[n], {n,0,30}]
    LinearRecurrence[{2,2,-1},{1,26,29},30] (* Harvey P. Dale, Mar 18 2018 *)
  • PARI
    a(n) = round((2^(-1-n)*(-3*(-1)^n*2^(5+n)-(3-sqrt(5))^n*(-53+sqrt(5))+(3+sqrt(5))^n*(53+sqrt(5))))/5) \\ Colin Barker, Oct 01 2016
    
  • PARI
    Vec(-(x-1)*(25*x+1)/((x+1)*(x^2-3*x+1)) + O(x^30)) \\ Colin Barker, Oct 01 2016
    
  • SageMath
    f=fibonacci; [f(n+1)^2 +25*f(n)^2 for n in (0..40)] # G. C. Greubel, Aug 17 2022

Formula

a(n) = 25*F(n)^2 + F(n+1)^2, where F(n) = A000045(n).
From Colin Barker, Jun 14 2013: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
G.f.: (1-x)*(1+25*x) / ((1+x)*(1-3*x+x^2)). (End)
a(n) = (2^(-1-n)*(-3*(-1)^n*2^(5+n) - (3-sqrt(5))^n*(-53+sqrt(5)) + (3+sqrt(5))^n*(53+sqrt(5))))/5. - Colin Barker, Oct 01 2016

Extensions

Edited by Dean Hickerson, May 08 2002
Showing 1-5 of 5 results.